Initialize the gradient of the modal basis at .
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ip), | intent(in) | :: | n | The order of the Jacobi polynomials. |
||
real(kind=wp), | intent(in), | dimension(:) | :: | x | The points at which to initialize the gradient of the modal basis. |
The return value is the derivative of the modal basis, .
function GradVandermonde1D ( n, x )
!! Initialize the gradient of the modal basis \(j\) at \(r_i\).
integer(ip), intent(in) :: n
!! The order of the Jacobi polynomials.
real(wp), dimension(:), intent(in) :: x
!! The points \(x\in[-1:1]\) at which to initialize the gradient of the
!! modal basis.
real(wp), dimension(size(x),n+1) :: GradVandermonde1D
!! The return value is the derivative of the modal basis,
!! \(\mathcal{V}_{r,(ij)}\).
integer :: j
do j=0,n
GradVandermonde1D(:,j+1) = GradJacobiP(x, 0.0_wp, 0.0_wp, j)
end do
return
end function GradVandermonde1D