GradVandermonde1D Function

function GradVandermonde1D(n, x)

Initialize the gradient of the modal basis at .

Arguments

Type IntentOptional AttributesName
integer(kind=ip), intent(in) :: n

The order of the Jacobi polynomials.

real(kind=wp), intent(in), dimension(:):: x

The points at which to initialize the gradient of the modal basis.

Return Value real(kind=wp), dimension(size(x),n+1)

The return value is the derivative of the modal basis, .


Calls

proc~~gradvandermonde1d~~CallsGraph proc~gradvandermonde1d GradVandermonde1D proc~gradjacobip GradJacobiP proc~gradvandermonde1d->proc~gradjacobip proc~jacobip JacobiP proc~gradjacobip->proc~jacobip

Called by

proc~~gradvandermonde1d~~CalledByGraph proc~gradvandermonde1d GradVandermonde1D proc~dmatrix1d Dmatrix1D proc~dmatrix1d->proc~gradvandermonde1d proc~init_ref_element init_ref_element proc~init_ref_element->proc~dmatrix1d interface~init_ref_element init_ref_element interface~init_ref_element->proc~init_ref_element interface~ref_element ref_element interface~ref_element->interface~init_ref_element proc~scal_schw_init scal_schw_init proc~scal_schw_init->interface~ref_element program~test test program~test->interface~ref_element interface~scal_schw_init scal_schw_init interface~scal_schw_init->proc~scal_schw_init

Contents

Source Code


Source Code

    function GradVandermonde1D ( n, x )
    !! Initialize the gradient of the modal basis \(j\) at \(r_i\).
      integer(ip), intent(in) :: n
      !! The order of the Jacobi polynomials.
      real(wp), dimension(:), intent(in) :: x
      !! The points \(x\in[-1:1]\) at which to initialize the gradient of the
      !! modal basis. 
      real(wp), dimension(size(x),n+1) :: GradVandermonde1D
      !! The return value is the derivative of the modal basis,
      !! \(\mathcal{V}_{r,(ij)}\).

      integer :: j

      do j=0,n
        GradVandermonde1D(:,j+1) = GradJacobiP(x, 0.0_wp, 0.0_wp, j)
      end do

      return
    end function GradVandermonde1D