1. How to Program, Part I
  2. How to Program, Part II
  3. How to Program, Part III
  4. How to Program, Part IV
  5. How to Program, Part V
  6. exercises
  7. pyMPI tutorial
  8. Calculating PI, Part I
  9. Calculating PI, Part II
  10. Calculating PI, Part III
  11. Poogle - Web Search
  12. Mandelbrot Sets
  13. Mandelbrot, The Code
  14. Mandelbrot, The Images
  15. Conway's Life, Part I
  16. Life Code Listing
  17. Conway's Life, Part II
  18. MPI Life Code Listing

MPI Life Code Listing

file: lifem.py
1 import time
2 import sys
3 import mpi
4 
5 # define the board, so far so good....
6 board = [
7     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
8     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0],
9     [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
10     [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1],
11     [1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
12     [1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0],
13     [0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0],
14     [0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
15     [0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
16     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
17     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
18     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
19     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
20     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
21     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
22     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
23     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
24     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
25     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
26     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
27     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
28     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
29     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
30     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
31     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
32     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
33     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
34     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
35     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
36     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
37     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
38     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
39     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
40     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
41     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
42     [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]]
43 
44 # split the board up into regions, each of size n rows
45 n = len(board)/mpi.size
46 
47 # subset of the board used for computation by a proc
48 ilo = mpi.rank*n
49 ihi = (mpi.rank+1)*n-1
50 
51 # subset of the board used for computation by a proc + ghost zones
52 nlo = ilo-1
53 nhi = ihi+1
54 if mpi.rank == 0: # min rank
55     nlo = ilo
56 elif mpi.rank+1 == mpi.size: # max rank
57     nhi = ihi
58 
59 # print one row of the board
60 def prow(row):
61     str = ""
62     for e in row:
63         if e == 0:
64             str += ". ";
65         else:
66             str += "X ";
67     print str
68 
69 # print out the board
70 def pboard(board):
71     if mpi.rank == 0:
72         for nn in range(nhi,len(board)):
73             (row_num,row_data)=mpi.recv(mpi.ANY_SOURCE)[0]
74             board[row_num] = row_data
75         # magic to home the cursor
76         print "\033[H"; #\033[2J",
77         print "Printing Board:"
78         for row in board:
79             prow(row)
80         print
81     else:
82         for i in range(ilo,ihi+1):
83             mpi.send((i,board[i]),0)
84     mpi.barrier()
85 
86 pboard(board)
87 
88 # number of game steps to play
89 nsteps = 1000
90 
91 # start playing
92 for step in range(nsteps):
93     # synchronize ghost zones... 
94     if nlo < ilo:
95         mpi.send(board[ilo],mpi.rank-1)
96     if ihi < nhi:
97         mpi.send(board[ihi],mpi.rank+1)
98     if ihi < nhi:
99         board[nhi] = mpi.recv(mpi.rank+1)[0]
100     if nlo < ilo:
101         board[nlo] = mpi.recv(mpi.rank-1)[0]
102 
103     # create a new board with all zeros
104     nboard = []
105     for k in range(len(board)):
106         nrow = []
107         for j in range(len(board[k])):
108             nrow.append(0)
109         nboard.append(nrow)
110 
111     # iterate over the old board
112     for i in range(ilo,ihi+1):
113         for j in range(len(board[i])):
114 
115             # find nearest neighbors...
116             sum = 0
117             for deli in range(-1,2):
118                 for delj in range(-1,2):
119                     if delj == 0 and deli == 0:
120                         pass
121                     elif i+deli < 0 or j+delj < 0:
122                         pass
123                     elif i+deli >= len(board) or j+delj >= len(board[i]):
124                         pass
125                     else:
126                         sum = sum + board[i+deli][j+delj]
127 
128             # fill in squares on the new board
129             # rule to stay alive
130             if board[i][j]==1 and sum == 2 or sum == 3:
131                 nboard[i][j] = 1
132 
133             # rule for birth
134             elif board[i][j]==0 and sum == 3:
135                 nboard[i][j] = 1
136 
137             # stay empty / die
138             else:
139                 nboard[i][j] = 0
140 
141     # trade the old board for the new one
142     board = nboard
143 
144     # print out the current step (debug)
145     #if step < 100:
146     pboard(board)
147 
148 # print result
149 pboard(board)