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Reminder



Lecture 8

What you should know from last lecture
I Lambda functions
I Asynchronous programming



Classical continuum mechanics
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Figure: The continuum in the reference configuration Ω0 and
after the deformation φ : Ω0 → R3 with det(grad φ) > 0 in the
current configuration Ω(t) at time t.

Prerequisites
I A material point in the continuum is identified with its

position X ∈ R3 in the so-called reference
configuration Ω0 ⊂ R3.

I The reference configuration Ω0 is refers to the shape
of the continuum at rest with no internal forces.



Prerequisites
I The deformation φ : [0, T ] × R3 → R3 of a material

point X in the reference configuration Ω0 to the
so-called current configuration Ω(t) is given by

φ(t, X) := id(X) + u(t, X) = x(t, X)

I where u : [0, T ] × R3 → R3 refers to the displacement

u(t, X) := x(t, X) − X .

I The stretch s : [0, T ] × R3 × R3 → R3 between the
material point X and the material point X ′ after the
deformation φ in the configuration Ω(t) is defined by

s(t, X , X ′) := φ(t, X ′) − φ(t, X) .



Notice

We just covered the prerequisites of classical continuum
mechanics which are necessary to introduce the
peridynamic theory. For more details, we refer to
I Liu, I-Shih. Continuum mechanics. Springer Science

& Business Media, 2013.
I Gurtin, Morton E. An introduction to continuum

mechanics. Vol. 158. Academic press, 1982.



Peridyanmics



What is peridynamics
I A non-local generalization of continuum mechanics
I Has a focus on discontinuous displacement as they

arise in fracture mechanics.
I Models crack and fractures on a mesoscopic scale

using Newton’s second law (force equals mass times
acceleration)

F = m · a = m · Ẍ

I Silling, Stewart A. ”Reformulation of elasticity theory for
discontinuities and long-range forces.” Journal of the
Mechanics and Physics of Solids 48.1 (2000): 175-209.

I Silling, Stewart A., and Ebrahim Askari. ”A meshfree
method based on the peridynamic model of solid
mechanics.” Computers & structures 83.17-18 (2005):
1526-1535.
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Figure: The continuum in the reference configuration Ω0 and the
interaction zone Bδ(X) for material point X with the horizon δ.



Principle II

Acceleration a : [0, T ] × R3 → R3

of a material point at position X at time t is given by

ρ(X)a(t, X) :=∫
Bδ(X)

f (t, x(t, X ′) − x(t, X), X ′ − X) dX ′ + b(t, X) ,

where f : [0, T ] × R3 × R3 → R3 denotes a pair-wise force
function, ρ(X) is the mass density and b : [0, T ] × R3 → R3

the external force.



Important fundamental assumptions
1. The medium is continuous (equal to a continuous

mass density field exists)
2. Internal forces are contact forces (equal to that

material points only interact if they are separated by
zero distance.

3. Conservation laws of mechanics apply (conservation
of mass, linear momentum, and angular momentum).

Conservation of linear momentum

f(t, −(x(t, X ′) − x(t, X)), −(X ′ − X)) =
− f(t, x(t, X ′) − x(t, X), X ′ − X)

Conservation of angular momentum

(x(t, X ′) − x(t, X) + X ′ − X) × f (t, x(t, X ′) − x(t, X), X ′ − X) = 0



Discretization



EMU nodal discretization (EMU ND)
Assumptions
I All material points X are placed at the nodes
X := {Xi ∈ R3|i = 1, . . . , n} of a regular grid in the
reference configuration Ω0.

I The discrete nodal spacing ∆x between Xi and Xj is
defined as ∆x = ‖Xj − Xi‖.

I The discrete interaction zone Bδ(Xi) of Xi is given by
Bδ(Xi) := {Xj| ||Xj − Xi|| ≤ δ}.

I For all material points at the nodes
X := {Xi ∈ R3|i = 1, . . . , n} a surrounding volume
V := { Vi ∈ R|i = 1, . . . , n} is assumed.

I These volumes are non overlapping Vi ∩ Vj = ∅ and
recover the volume of the volume of the reference
configuration

∑n
i=1 Vi = VΩ0.



Discrete equation of motion

Xi

ρ(Xi)a(t, Xi) =
∑

Xj∈Bδ(Xi)

f (t, x(t, Xj) − x(t, Xi), Xj − Xi) dVj + b(t, Xi)



Note that we computed the acceleration of a material
point a(t, X) and we need to compute the displacement
u(t, X) by a
Central difference scheme

u(t + 1, X) =

2u(t, X) − u(t − 1, X) + ∆t2

 ∑
Xj∈Bδ(Xi)

f(t, Xi , Xj) + b(t, X)


to compute the actual displacement
x(t, X) := id(X) + u(t, X).



Material models



Prototype Microelastic Brittle (PMB) model

In this model the assumption is made that the pair-wise
force f only depends on the relative normalized bond
stretch s : [0, T ] × R3 × R3 → R

s(t, x(t, X ′) − x(t, X), X ′ − X) :=
||x(t, X ′) − x(t, X))|| − ||X ′ − X ||

||X ′ − X ||
.

where
I X ′ − X is the vector between the material points in the

reference configuration,
I x(t, X ′) − x(t, X) is the vector between the material

point in the current configuration.



Pair-wise bond force f

f(t, x(t, X ′) − x(t, X), X ′ − X) :=

c s(t, x(t, X ′) − x(t, X), X ′ − X) x(t, X ′) − x(t, X)
‖x(t, X ′) − x(t, X)‖

with a material dependent stiffness constant c.
More details:
I Silling, Stewart A., and Ebrahim Askari. ”A meshfree

method based on the peridynamic model of solid
mechanics.” Computers & structures 83.17-18 (2005):
1526-1535.

I Parks, Michael L., et al. ”Implementing peridynamics
within a molecular dynamics code.” Computer Physics
Communications 179.11 (2008): 777-783.
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Figure: Sketch of the pair-wise linear valued force function f
with the stiffness constant c as slope.

Note that there is no notion of failure/damage in the
current material model.



Introducing failure
Introduce a scalar valued history dependent function
µ : [0, T ] × R3 × R3 → N to the computation of the
pair-wise force

f(t, x(t, X ′) − x(t, X), X ′ − X) :=
cs(t, x(t, X ′) − x(t, X), X ′ − X)

µ(t, x(t, X ′) − x(t, X), X ′ − X) x(t, X ′) − x(t, X)
‖x(t, X ′) − x(t, X)‖

.

with

µ(t, x(t, X ′) − x(t, X), X ′ − X) := (1){
1 s(t, x(t, X ′) − x(t, X), X ′ − X) < sc

0 otherwise
(2)
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Figure: Sketch of the pair-wise linear valued force function f with
the stiffness constant c as slope and the critical bond stretch sc.



Definition of damage

With the scalar valued history dependent function µ the
notion of damage d(t, X) : [0, T ] × R3 → R can be
introduced via

d(t, X) := 1 −

∫
Bδ(X)

µ(t, x(t, X ′) − x(t, X), X ′ − X)dX ′

∫
Bδ(X)

dX ′
.

To express damage in words, it is the ratio of the active
(non-broken) bonds and the amount of bonds in the
reference configuration within the neighborhood.



Relation to classical continuum mechanics
Stiffness constant

c = 18K
πδ

Critical bond stretch

sc =
√

5G
9Kδ

With
I K is the bulk modulus
I G is the energy release rat



Notice

We just covered the basics of peridynamics which are
necessary to implement peridyanmics for the course
project. Fore more details we refer to
I Bobaru, Florin, et al., eds. Handbook of peridynamic

modeling. CRC press, 2016.
I Madenci E, Oterkus E. Peridynamic Theory.

InPeridynamic Theory and Its Applications 2014 (pp.
19-43). Springer, New York, NY.



Implementation



Algorithm

1. Read the input files
2. Compute the neighborhoods Bδ

3. While tn ≤ T
3.1 Update the boundary conditions
3.2 Compute the pair-wise forces f
3.3 Compute the acceleration a
3.4 Approximate the displacement
3.5 Compute the new positions
3.6 Output the simulation data
3.7 Update the time step tn = tn + 1
3.8 Update the time t = ∆t ∗ tn



Summary



Summary

After this lecture, you should know
I Concept of peridyanmics
I Discretization of peridynamics
I Material models

Note that this lecture is not relevant for the exams, but you
should understand the content to implement the course

project.



Disclaimer

Some of the material, e.g. figures, plots, equations, and
sentences, were adapted from P. Diehl, Modeling and
Simulation of cracks and fractures with peridynamics in
brittle materials, Doktorarbeit, University of Bonn, 2017.
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