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Classical continuum mechanics
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Figure: The continuum in the reference configuration Ω0 and after the
deformation φ : Ω0 → R3 with det(grad φ) > 0 in the current
configuration Ω(t) at time t.

Prerequisites
I A material point in the continuum is identified with its

position X ∈ R3 in the so-called reference configuration
Ω0 ⊂ R3.

I The reference configuration Ω0 is refers to the shape of the
continuum at rest with no internal forces.

Prerequisites
I The deformation φ : [0, T ] × R3 → R3 of a material point X

in the reference configuration Ω0 to the so-called current
configuration Ω(t) is given by

φ(t, X) := id(X) + u(t, X) = x(t, X)

I where u : [0, T ] × R3 → R3 refers to the displacement

u(t, X) := x(t, X) − X .

I The stretch s : [0, T ] × R3 × R3 → R3 between the material
point X and the material point X ′ after the deformation φ in
the configuration Ω(t) is defined by

s(t, X , X ′) := φ(t, X ′) − φ(t, X) .

Notice

We just covered the prerequisites of classical continuum mechanics
which are necessary to introduce the peridynamic theory. For more
details, we refer to
I Liu, I-Shih. Continuum mechanics. Springer Science &

Business Media, 2013.
I Gurtin, Morton E. An introduction to continuum mechanics.

Vol. 158. Academic press, 1982.
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Peridyanmics

What is peridynamics

I A non-local generalization of continuum mechanics
I Has a focus on discontinuous displacement as they arise in

fracture mechanics.
I Models crack and fractures on a mesoscopic scale using

Newton’s second law (force equals mass times acceleration)

F = m · a = m · Ẍ

I Silling, Stewart A. ”Reformulation of elasticity theory for
discontinuities and long-range forces.” Journal of the Mechanics and
Physics of Solids 48.1 (2000): 175-209.

I Silling, Stewart A., and Ebrahim Askari. ”A meshfree method based
on the peridynamic model of solid mechanics.” Computers &
structures 83.17-18 (2005): 1526-1535.
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Figure: The continuum in the reference configuration Ω0 and the
interaction zone Bδ(X) for material point X with the horizon δ.

Principle II

Acceleration a : [0, T ] × R3 → R3

of a material point at position X at time t is given by

ρ(X)a(t, X) :=∫
Bδ(X)

f
(
t, x(t, X ′) − x(t, X), X ′ − X

)
dX ′ + b(t, X) ,

where f : [0, T ] × R3 × R3 → R3 denotes a pair-wise force
function, ρ(X) is the mass density and b : [0, T ] × R3 → R3 the
external force.
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Important fundamental assumptions

1. The medium is continuous (equal to a continuous mass
density field exists)

2. Internal forces are contact forces (equal to that material
points only interact if they are separated by zero distance.

3. Conservation laws of mechanics apply (conservation of mass,
linear momentum, and angular momentum).

Conservation of linear momentum

f (t, −(x(t, X ′) − x(t, X)), −(X ′ − X)) =
− f (t, x(t, X ′) − x(t, X), X ′ − X)

Conservation of angular momentum

(x(t, X ′) − x(t, X) + X ′ − X) × f
(
t, x(t, X ′) − x(t, X), X ′ − X

)
= 0

Discretization

EMU nodal discretization (EMU ND)

Assumptions
I All material points X are placed at the nodes
X := {Xi ∈ R3|i = 1, . . . , n} of a regular grid in the reference
configuration Ω0.

I The discrete nodal spacing ∆x between Xi and Xj is defined
as ∆x = ‖Xj − Xi‖.

I The discrete interaction zone Bδ(Xi) of Xi is given by
Bδ(Xi) := {Xj | ||Xj − Xi || ≤ δ}.

I For all material points at the nodes
X := {Xi ∈ R3|i = 1, . . . , n} a surrounding volume
V := { Vi ∈ R|i = 1, . . . , n} is assumed.

I These volumes are non overlapping Vi ∩ Vj = ∅ and recover
the volume of the volume of the reference configuration∑n

i=1 Vi = VΩ0 .

Discrete equation of motion

Xi

ρ(Xi)a(t, Xi) =
∑

Xj∈Bδ(Xi )

f (t, x(t, Xj) − x(t, Xi), Xj − Xi) dVj + b(t, Xi)
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Note that we computed the acceleration of a material point
a(t, X) and we need to compute the displacement u(t, X) by a

Central difference scheme

u(t + 1, X) =

2u(t, X) − u(t − 1, X) + ∆t2

 ∑
Xj∈Bδ(Xi )

f (t, Xi , Xj) + b(t, X)


to compute the actual displacement x(t, X) := id(X) + u(t, X).

Material models

Prototype Microelastic Brittle (PMB) model

In this model the assumption is made that the pair-wise force f
only depends on the relative normalized bond stretch
s : [0, T ] × R3 × R3 → R

s(t, x(t, X ′) − x(t, X), X ′ − X) :=
||x(t, X ′) − x(t, X))|| − ||X ′ − X ||

||X ′ − X ||
.

where
I X ′ − X is the vector between the material points in the

reference configuration,
I x(t, X ′) − x(t, X) is the vector between the material point in

the current configuration.

Pair-wise bond force f

f (t, x(t, X ′) − x(t, X), X ′ − X) :=

c s(t, x(t, X ′) − x(t, X), X ′ − X) x(t, X ′) − x(t, X)
‖x(t, X ′) − x(t, X)‖

with a material dependent stiffness constant c.

More details:
I Silling, Stewart A., and Ebrahim Askari. ”A meshfree method based

on the peridynamic model of solid mechanics.” Computers &
structures 83.17-18 (2005): 1526-1535.

I Parks, Michael L., et al. ”Implementing peridynamics within a
molecular dynamics code.” Computer Physics Communications
179.11 (2008): 777-783.
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Figure: Sketch of the pair-wise linear valued force function f with the
stiffness constant c as slope.

Note that there is no notion of failure/damage in the current
material model.

Introducing failure

Introduce a scalar valued history dependent function
µ : [0, T ] ×R3 ×R3 → N to the computation of the pair-wise force

f (t, x(t, X ′) − x(t, X), X ′ − X) :=
cs(t, x(t, X ′) − x(t, X), X ′ − X)

µ(t, x(t, X ′) − x(t, X), X ′ − X) x(t, X ′) − x(t, X)
‖x(t, X ′) − x(t, X)‖

.

with

µ(t, x(t, X ′) − x(t, X), X ′ − X) := (1){
1 s(t, x(t, X ′) − x(t, X), X ′ − X) < sc

0 otherwise
(2)

sc
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f

Figure: Sketch of the pair-wise linear valued force function f with the
stiffness constant c as slope and the critical bond stretch sc .

Definition of damage

With the scalar valued history dependent function µ the notion of
damage d(t, X) : [0, T ] × R3 → R can be introduced via

d(t, X) := 1 −

∫
Bδ(X)

µ(t, x(t, X ′) − x(t, X), X ′ − X)dX ′

∫
Bδ(X)

dX ′
.

To express damage in words, it is the ratio of the active
(non-broken) bonds and the amount of bonds in the reference
configuration within the neighborhood.
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Relation to classical continuum mechanics

Stiffness constant

c = 18K
πδ

Critical bond stretch

sc =
√

5G
9Kδ

With
I K is the bulk modulus
I G is the energy release rat

Notice

We just covered the basics of peridynamics which are necessary to
implement peridyanmics for the course project. Fore more details
we refer to
I Bobaru, Florin, et al., eds. Handbook of peridynamic

modeling. CRC press, 2016.
I Madenci E, Oterkus E. Peridynamic Theory. InPeridynamic

Theory and Its Applications 2014 (pp. 19-43). Springer, New
York, NY.

Implementation

Algorithm

1. Read the input files
2. Compute the neighborhoods Bδ

3. While tn ≤ T
3.1 Update the boundary conditions
3.2 Compute the pair-wise forces f
3.3 Compute the acceleration a
3.4 Approximate the displacement
3.5 Compute the new positions
3.6 Output the simulation data
3.7 Update the time step tn = tn + 1
3.8 Update the time t = ∆t ∗ tn
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Summary

Summary

After this lecture, you should know
I Concept of peridyanmics
I Discretization of peridynamics
I Material models

Note that this lecture is not relevant for the exams, but you should
understand the content to implement the course project.

Disclaimer

Some of the material, e.g. figures, plots, equations, and sentences,
were adapted from P. Diehl, Modeling and Simulation of cracks
and fractures with peridynamics in brittle materials, Doktorarbeit,
University of Bonn, 2017.
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