
Math 4997-3
Lecture 7: Asynchronous programming

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Reminder

Asynchronous programming

Lambda functions

Summary

References

Reminder

Lecture 6

What you should know from last lecture
I Shared memory parallelism
I Parallel algorithms and execution policies
I Data races and dead locks

Asynchronous programming

Synchronous programming

Dependency graph

H

P X

Code
auto P = compute();
auto X = compute();
auto H = compute(P,X);

I The program is executed line by line
I Each time a function is called the code waits until the

functions finishes
I We can not compute P and X at the same time, since

the data is independent

Asynchronous programming [3]
Code
int P,X = 1;

std::future<int> f1 = std::async(compute,P);
auto f2 = std::async(compute,X);

std::cout << compute(f1.get() + f2.get()) << std::endl;

I The program is some times executed line by line
I Calling std::async the next line is executed, even if the

function has not finished yet
I We have to use the std::future to synchronize the

asynchronous function calls
More details: CppCon 2017: H. Kaiser “The Asynchronous C++ Parallel Programming Model”1

1https://www.youtube.com/watch?v=js-e8xAMd1s

https://www.youtube.com/watch?v=js-e8xAMd1s

Asynchronous execution of functions2

bool is_prime (int x) {
std::cout << "Calculating. Please, wait...\n";
for (int i=2; i<x; ++i) if (x%i==0) return false;
return true;

}

std::future<bool> f = std::async (is_prime ,313222313);

I The first argument fn is a function pointer
I The second argument is the first argument of the

function, and so on
I The return value is a std::future<T> where T is the

return type of the function
For each call of std::async launches a new thread to
execute the function the function pointer fn points to.

2http://www.cplusplus.com/reference/future/async/

http://www.cplusplus.com/reference/future/async/

Futurization3

A std::future provides a mechanism to access the result
of asynchronous operations, like std::async and provides
methods for synchronization.
Synchronization
I .get() returns the result of the functions and wait until

the computation finished
I .wait() waits until the computation finished
I .wait_for(std::chrono::seconds(1)) returns if it is not

available for the specified timeout duration
I .wait_until(std::chrono::seconds(1)) waits for a result

to become available. It blocks until specified timeout
time has been reached or the result becomes
available, whichever comes first.

3https://en.cppreference.com/w/cpp/thread/future

https://en.cppreference.com/w/cpp/thread/future

Parallelism using asynchronous programming

Example: Taylor series

sin(x) =
n∑

n=0

(−1)n−1 x2n

(2n)!

Approach
1. Split n into slices, e.g. 2 times n/2 for two threads
2. Start two times std::async where each thread

computes n/2

3. Use the two futures to synchronize the results
4. Combine the two futures to obtain the result

Implementation I

Function
double taylor(size_t begin, size_t end,
double x,size_t n){
double res = 0;

for(size_t i = begin ; i < end ; i++)
{
res += pow(-1,i-1) * pow(x,2*n) / factorial(2*n);
}
return res;
}

I With begin and end, the range is defined
I The range needs to be adapted to the amount of

threads you want to launch

Implementation II
Launching
auto f1 = std::async(taylor ,0,49,2,100);
auto f2 = std::async(taylor ,50,99,2,100);

Gathering the results
double result = f1.get() + f2.get();

Compilation
g++ main.cpp -o futures -phtread

We need to add -pthread to our compiler to use the POSIX
threads to launch the functions asynchronous (std::async)
More details about POSIX threads [1, 2].

Lambda functions

Lambda expression4

Structure
[capture clause] (parameters) -> return-type
{

definition of method
}

Notes
I Generally return-type in lambda expression are

evaluated by compiler
I Capture clause:

– [&] : capture all external variable by reference
– [=] : capture all external variable by value
– [a, &b] : capture a by value and b by reference

More about the capture clauses in lecture 11/12.
4https://en.cppreference.com/w/cpp/language/lambda

https://en.cppreference.com/w/cpp/language/lambda

Practical example

std::vector<int> v {4, 1, 3, 5, 2, 3, 1, 7};

Classical function
void print(int i){
std::cout << i << std::endl;
}
std::for_each(v.begin(), v.end(), print);

Lambda expression
std::for_each(v.begin(),v.end(),

[](int i){std::cout<< i << std::endl;})

More examples

find_if5

std::vector<int>:: iterator p = find_if(
v.begin(),

v.end(),
[](int i)

{
return i > 4;

});
std::cout << "First number greater than 4 is :
" << *p
<< endl;

Many more algorithms are available in the
#include <algorithm>6

5https://en.cppreference.com/w/cpp/algorithm/find
6https://en.cppreference.com/w/cpp/algorithm

https://en.cppreference.com/w/cpp/algorithm/find
https://en.cppreference.com/w/cpp/algorithm

Summary

Summary

After this lecture, you should know
I Asynchronous programming std::async and

std::future

I Lambda functions

References

References I
[1] David R Butenhof.

Programming with POSIX threads.
Addison-Wesley Professional, 1997.

[2] Steve Kleiman, Devang Shah, and Bart Smaalders.
Programming with threads.
Sun Soft Press Mountain View, 1996.

[3] Anthony Williams.
C++ concurrency in action : practical multithreading.
Manning, Shelter Island, NY, 2012.

	Reminder
	Asynchronous programming
	Lambda functions
	Summary
	References

