
Math 4997-3
Lecture 6: Shared memory parallelism

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


Reminder

Shared memory parallelism

Parallel algorithms

Execution policies

Be aware of: Data races and Deadlocks

Summary

References



Reminder



Lecture 5

What you should know from last lecture
I Operator overloading
I Header and class files
I CMake



Shared memory parallelism



Definition of parallelism

I We need multiple resources which can operate at the
same time

I We have to have more than one task that can be
performed at the same time

I We have to do multiple tasks on multiple resources
the same time



Amdahl’s Law (Strong scaling) [1]

S = 1
(1 − P) + P

N

where S is the speed up, P the proportion of parallel
code, and N the numbers of threads.
Example
A program took 20 hours using a single thread and only
the part took one hour can not be run in parallel, we will
get P = 0.95. So the theoretical speed up is 1

(1−0.95) = 20.

Parallel computing with many threads is only beneficial for
highly parallelizable programs.



0 500 1,000 1,500 2,000
0

5

10

15

20

N number of threads

S
sp

ee
du

p
P = 0%
P = 50%
P = 75%
P = 90%
P = 95%

Figure: Plot of Amdahl’s law for different parallel portions of the
code.



Example: Dot product

S = X · V =
N∑
i

xiyi

X = {x1, x2, . . . , xn}
Y = {y1, y2, . . . , yn}

S = (x1y1) + (x2y2) + . . . + (xnyn)
Flow chart: Sequential

× × × × ×. . .

+ + + +. . .

x1 x2 x3 x4 xny1 y2 y3 y4 yn

s



Parallelism approaches

Pipeline parallelism
I Used in vector processors
I Data passes between successive stages
I Used in execution pipelines in all general

microprocessors
I Exploits

– Fine grain parallelism
– High clock speeds
– Latency hiding

+S xy get xi,yi
X = {x1, x2, . . . , xn}
Y = {y1, y2, . . . , yn}

S

More details [6]



Parallelism approaches

Single instructions and multiple data (SIMD)
I All perform same operation at the same time
I But may perform different operations at different times
I Each operates on separate data
I Used in accelerators on microprocessors
I Scales as long as data scales

SIMD is part of Flynn’s taxonomy, a classification of
computer architectures, proposed by Michael J. Flynn in
1966 [4, 2].



Flow chart: SIMD

Algorithm
1. S = 0
2. Get xi+1, yi+1

3. Compute xy
4. Add to S
5. More data, go to 2
6. Send S to reduce
7. Stop

P1 P2 P3 P4

+ +

+

Re
du

ct
io

n
tre

e

X = {x1, x2}
Y = {x9, x10}

X = {x3, x4}
Y = {x11, x12}

X = {x5, x6}
Y = {x13, x14}

X = {x7, x8}
Y = {x15, x16}

Reduction tree: Exploits fine grain functions and need
global communications



Uniform memory access (UMA)

1 .. n 1 .. n

Bus

CPU 1 CPU 2

Memory

Access times
I Memory access times are the same

More details [3, 5].



Non-uniform memory access (NUMA)

1 .. n 1 .. n

Bus Bus

CPU 1 CPU 2

Memory Memory

Access time to the memory depends on the memory
location relative to the CPU.
Access times
I Local memory access is fast
I Non-local memory access has some overhead



Parallel algorithms



Parallel algorithms in C++ 172

I C++17 added support for parallel algorithms to the
standard library, to help programs take advantage of
parallel execution for improved performance.

I Parallelized versions of 69 algorithms from
<algorithm>, <numeric> and <memory> are available.

Recently new feature!
Only recently released compilers (gcc 9 and MSVC
19.14)1 implement these new features and some of them
are still experimental.

Some special compiler flags are needed to use these
features:
g++ -std=c++1z -ltbb lecture6 -loops.cpp

1https://en.cppreference.com/w/cpp/compiler_support
2https://en.cppreference.com/w/cpp/experimental/parallelism

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/experimental/parallelism


Example: Accumulate
std::vector<int> nums(1000000,1);

Sequential3

auto result = std::accumulate(nums.begin(),
nums.end(),
0.0);

Parallel4
auto result = std::reduce(

std::execution::par,
nums.begin(), nums.end());

Important: std::execution::par from #include<execution>5

3https://en.cppreference.com/w/cpp/algorithm/accumulate
4https://en.cppreference.com/w/cpp/experimental/reduce
5https://en.cppreference.com/w/cpp/experimental/execution_policy_tag

https://en.cppreference.com/w/cpp/algorithm/accumulate
https://en.cppreference.com/w/cpp/experimental/reduce
https://en.cppreference.com/w/cpp/experimental/execution_policy_tag


Execution time

Time measurements
g++ -std=c++1z -ltbb lecture6 -loops.cpp
./a.out
std::accumulate result 9e+08 took 10370.689498 ms
std::reduce result 9.000000e+08 took 612.173647 ms



Execution policies



Execution policies
I std::execution::seq

The algorithm is executed sequential, like
std::accumulate in the previous example and using
only once thread.

I std::execution::par
The algorithm is executed in parallel and used
multiple threads.

I std::execution::par_unseq
The algorithm is executed in parallel and
vectorization is used.

Note we will not cover vectorization in this course.

Fore more details: CppCon 2016: Bryce Adelstein
Lelbach “The C++17 Parallel Algorithms Library and
Beyond”6

6https://www.youtube.com/watch?v=Vck6kzWjY88

https://www.youtube.com/watch?v=Vck6kzWjY88


Be aware of: Data races and
Deadlocks



Be aware of

With great power comes great responsibility!

You are responsible
When using parallel execution policy, it is the
programmer’s responsibility to avoid
I data races
I race conditions
I deadlocks



Data race

//Compute the sum of the array a in parallel
int a[] = {0,1};
int sum = 0;
std::for_each(std::execution::par,

std::begin(a),
std::end(a), [&](int i) {

sum += a[i]; // Error: Data race
});

Data race:
A data race exists when multithreaded (or otherwise
parallel) code that would access a shared resource could
do so in such a way as to cause unexpected results.



Solution I: data races
std::atomic7

//Compute the sum of the array a in parallel
int a[] = {0,1};
std::atomic<int> sum{0};
std::for_each(std::execution::par,

std::begin(a),
std::end(a), [&](int i) {

sum += a[i];
});

The atomic library8 provides components for fine-grained
atomic operations allowing for lockless concurrent
programming. Each atomic operation is indivisible with
regards to any other atomic operation that involves the
same object. Atomic objects are free of data races.

7https://en.cppreference.com/w/cpp/atomic/atomic
8https://en.cppreference.com/w/cpp/atomic

https://en.cppreference.com/w/cpp/atomic/atomic
https://en.cppreference.com/w/cpp/atomic


Solution 2: data races
std::mutex9

//Compute the sum of the array a in parallel
int a[] = {0,1};
int sum = 0;
std::mutex m;
std::for_each(std::execution::par,

std::begin(a),
std::end(a), [&](int i) {

m.lock();
sum += a[i];
m.unlock();

});

The mutex class is a synchronization primitive that can be
used to protect shared data from being simultaneously
accessed by multiple threads.

9https://en.cppreference.com/w/cpp/thread/mutex

https://en.cppreference.com/w/cpp/thread/mutex


Race condition

if (x == 5) // Checking x
{

// Different thread could change x

y = x * 2; // Using x
}
// It is not sure if y is 10 or any other value.

Race condition
A check of a shared variable within a parallel execution
and another thread could change this variable before it is
used.



Solution: Race condition
std::mutex m;

m.lock();
if (x == 5) // Checking x
{

// Different thread could change x

y = x * 2; // Using x
}
m.unlock();
// Now it is sure that y will be 10

Race condition
A check of a shared variable within a parallel execution
and another thread could change this variable before it is
used.



Deadlocks

Deadlock describes a situation where two or more threads
are blocked forever, waiting for each other.

Example (Taken from10)
Alphonse and Gaston are friends, and great believers in
courtesy. A strict rule of courtesy is that when you bow to
a friend, you must remain bowed until your friend has a
chance to return the bow. Unfortunately, this rule does not
account for the possibility that two friends might bow to
each other at the same time.

Example: lecture7-deadlocks.cpp

10https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html

https://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html


Summary



Summary

After this lecture, you should know
I Shared memory parallelism
I Parallel algorithms
I Execution policies
I Race condition, data race, and deadlocks

Further reading:
C++ Lecture 3 - Modern Paralization Techniques11:
OpenMP for shared memory parallelism and the Message
Passing Interface for distributed memory parallelism.
Note that HPX which will we cover after the midterm is
introduced there.

11https://www.youtube.com/watch?v=1DUW5Qw3eck

https://www.youtube.com/watch?v=1DUW5Qw3eck


References



References I
[1] Gene M Amdahl.

Validity of the single processor approach to achieving
large scale computing capabilities.
In Proceedings of the April 18-20, 1967, spring joint
computer conference, pages 483–485. ACM, 1967.

[2] Ralph Duncan.
A survey of parallel computer architectures.
Computer, 23(2):5–16, 1990.

[3] Hesham El-Rewini and Mostafa Abd-El-Barr.
Advanced computer architecture and parallel
processing, volume 42.
John Wiley & Sons, 2005.



References II
[4] Michael J Flynn.

Some computer organizations and their effectiveness.
IEEE transactions on computers, 100(9):948–960,
1972.

[5] Georg Hager and Gerhard Wellein.
Introduction to high performance computing for
scientists and engineers.
CRC Press, 2010.

[6] Michael Quinn.
Parallel Programming in C with MPI and OpenMP.
McGraw-Hill Science/Engineering/Math, 2003.


	Reminder
	Shared memory parallelism
	Parallel algorithms
	Execution policies
	Be aware of: Data races and Deadlocks
	Summary
	References

