
Math 4997-3
Lecture 5: Operator overloading and structuring

programs

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Reminder

Operator overloading

Structure of code
Header files
Class types

CMake

Summary

Reminder

Lecture 4

What you should know from last lecture
I N-Body simulations
I Struct
I Generic programming (Templates)

Operator overloading

Example
Vector
template<typename T>
struct vector {
T x;
T y;
T z;
};

Addition of two vectors
vector<double> a;
vector<double> b;
std::cout << a + b << std::endl;

Compilation error
error: no match for ‘operator’+
(operand types are ‘’vector and ‘’vector)

Example
Vector
template<typename T>
struct vector {
T x;
T y;
T z;
};

Addition of two vectors
vector<double> a;
vector<double> b;
std::cout << a + b << std::endl;

Compilation error
error: no match for ‘operator’+
(operand types are ‘’vector and ‘’vector)

Operator overloading1

template<typename T>
struct vector {
T x;
T y;
T z;
// Overload the addition operator
vector<T> operator+(const vector<T> rhs){
return vector<T>(x + rhs.x, y + rhs.y, z + rhs.z);
}
};

Following operators can be overloaded
I 38 operators can be overloaded
I 40 operators can be overloaded, since C++ 20

1https://en.cppreference.com/w/cpp/language/operators

https://en.cppreference.com/w/cpp/language/operators

Can we compile now?
template<typename T>
struct vector {
T x;
T y;
T z;
// Overload the addition operator
vector<T> operator+(const vector<T> rhs){
return vector<T>(x + rhs.x, y + rhs.y, z + rhs.z);
}
};

D’oh!
error: no match for ‘operator’<<
(operand types are ‘std::ostream
{aka std::basic_ostream’} and ‘’vector)

std::cout << a + b << std::endl;

Can we compile now?
template<typename T>
struct vector {
T x;
T y;
T z;
// Overload the addition operator
vector<T> operator+(const vector<T> rhs){
return vector<T>(x + rhs.x, y + rhs.y, z + rhs.z);
}
};

D’oh!
error: no match for ‘operator’<<
(operand types are ‘std::ostream
{aka std::basic_ostream’} and ‘’vector)

std::cout << a + b << std::endl;

Overload the next parameter
template<typename T>
struct vector {
T x, y, z;
vector(T x, T y, T z) : x(x),y(y),z(z) {};
// Overload the addition operator
vector<T> operator+(const vector<T> rhs){
return vector<T>(x + rhs.x, y + rhs.y, z + rhs.z);
}
//Overload the output operator
friend ostream& operator

<<(ostream& os, const vector<T>& vec)
{

os << vec.x << " " << vec.y << " " << vec.z;
return os;

}
};

We will have a closer look to friend in the next section.

Structure of code

Organization of code

C++ provides two fundamental ways to organize
the code
I Functions or so-called subroutines, e.g. double norm()

I Data structures, e.g. struct

we have learned so far. A new opportunity is to split the
code into different files to make all files shorter and
separate the code by its functionality.

Let us look into header files2 first and later at classes to
do this.
More details [?, ?].

2https://docs.microsoft.com/en-us/cpp/cpp/header-files-cpp?view=vs-2019

https://docs.microsoft.com/en-us/cpp/cpp/header-files-cpp?view=vs-2019

Header file
I A common naming convention is that header files

end with .h or .hpp, e.g. average.h
I We include them into our code by using

#include<average.h>

I Note the inclusions form the C++ standard library do
not end with .h or .hpp

Example of the average.h file
// Utils for the vector container
namespace util {

}

Namespaces3 namespace are used to avoid naming
conflicts and structure in large projects.

3https://en.cppreference.com/w/cpp/language/namespace

https://en.cppreference.com/w/cpp/language/namespace

Adding code to the header file
// Average of the elements of a vector
#include <vector>
#include <algorithm >

namespace util {

double average(std::vector<double> vec){
return std::accumulate(vec.begin(), vec.end(), 0.0f)

/ vec.size();
}

}

Usage
#include "average.h"
double res = util::average(vector);

Include guards
#ifndef UTIL_H // include guard
#define UTIL_H

// Average of the elements of a vector
#include <vector>
#include <algorithm >

namespace util {

double average(std::vector<double> vec){
return std::accumulate(vec.begin(), vec.end(), 0.0f)

/ vec.size();
}
}
#endif

Include guards avoid that functions or data structures are
multiple defined. Short from: #pragma once

Remarks for header files

Following things are considered as good practice:
I Each header file provides exactly one functionality
I Each header file includes all its dependencies

Following things should not be in header files and be
considered as bad practice:
I built-in type definitions at namespace or global scope
I non-inline function definitions
I non-const variable definitions
I aggregate definitions
I unnamed namespaces
I using directives

Compilation with header files
Folder structure
sources/

main.cpp
includes/

average.h

File main.cpp
#include<average.h>

int main(void){
std::cout << util::average(vec) << std::endl;

}

Compilation
g++ -o main -I ../includes main.cpp

Definition of a class type4

class vector2 {

private:

double x , y , z;

public:

vector2(double x = 0, double y=0, double z=0)
: x(x) , y(y) ,z(z) {};

double norm(){ return std::sqrt(x*x+y*y+z*z);}
};

Access specifier:
I public – members are accessible from outside the

class
I private – members cannot be accessed from outside

4https://en.cppreference.com/w/cpp/language/classes

https://en.cppreference.com/w/cpp/language/classes

Definition of classes

class vector2 {
private:
double x , y , z;
public:
vector2(double x = 0, double y=0, double z=0)

: x(x) , y(y) ,z(z) {}
double norm(){ return std::sqrt(x*x+y*y+z*z);}
};

int main()
{

vector2 vec = vector2();

return 0;
}

Structuring of classes

Header file (vector.h)
class vector2 {

private:

double x , y , z;

public:
vector2(double x = 0, double y=0, double z=0);

double norm();
};

In a header file the attributes and the member function of
the class are defined.

Structuring of classes
Class file (vector.cpp)
#include "vector2.h"

vector2::vector2(double x, double y, double z)
{

x = x; x = y; z = z;
}

double vector2::norm(){return std::sqrt(x*x+y*y+z*z)}

I In the cpp file the implementation of the members
functions and the constructor is defined.

I The corresponding header file needs to be included.
I The header file has to been included to access the

public member functions and attributes of the class.
I The class file needs to be compiled before it can be

used.

Usage and compilation
#include "vector2.h"

int main()
{

vector2 vec = vector2();

return 0;
}

Compilation
g++ -c vector2.cpp
g++ main.cpp vector2.o

We do not want to do this for several files or?

CMake

CMake5

CMake is a cross-platform free and open-source software
tool for managing the build process of software using a
compiler-independent method. It supports directory
hierarchies and applications that depend on multiple
libraries. It is used in conjunction with native build
environments such as Make, Ninja, Apple’s Xcode, and
Microsoft Visual Studio. It has minimal dependencies,
requiring only a C++ compiler on its own build system.

5https://cmake.org/

https://cmake.org/

Compile a single cpp file

Content: CMakeLists.txt
cmake_minimum_required(VERSION 3.10.1)
project (hello_world)
add_executable(hello main.cpp)

Running cmake
mkdir build
cd build
cmake ..
make
./hello

Compiling a class file and a main file

Folder structure
.
|-- CMakeLists.txt
|-- build
|-- include
| \-- vector2.h
\-- src

|-- vector2.cpp
\-- main.cpp

3 directories , 4 files

Corresponding CMakeLists.txt

project(directory_test)

#Bring the headers , such as Student.h into the project
include_directories(include)

#Manually adding all sources
#set(SOURCES src/main.cpp src/vector2.cpp)

#Adding sources easier
file(GLOB SOURCES "src/*.cpp")

add_executable(test ${SOURCES})

Summary

Summary

After this lecture, you should know
I Operator overloading
I Splitting class types in header and class files
I Building projects using CMake

	Reminder
	Operator overloading
	Structure of code
	Header files
	Class types

	CMake
	Summary

