Math 4997-3

Lecture 4: N-Body simulations, Structs, Classes, and generic functions

<https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/>

This work is licensed under a [Creative Commons "Attribution-NonCommercial-](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en)[NoDerivatives 4.0 International"](https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en) license.

[Reminder](#page-2-0)

N[-body simulations](#page-4-0)

[Structs](#page-15-0)

[Generic programming](#page-22-0)

[Summary](#page-27-0)

[References](#page-29-0)

[Reminder](#page-2-0)

Lecture 3

What you should know from last lecture

- \blacktriangleright Iterators
- \blacktriangleright Lists
- \blacktriangleright Library algorithms
- \blacktriangleright Numerical limits
- \blacktriangleright Reading and Writing files

N[-body simulations](#page-4-0)

N-body simulations¹

The *N*-body problem is the physically problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally.

Informal description:

Predict the interactive forces and true orbital motions for all future times of a group of celestial bodies. We assume that we have their quasi-steady orbital properties, e.g. instantaneous position, velocity and time.

¹ By Michael L. Umbricht - Own work, CC BY-SA 4.0

Recall: Vectors and basic operations

Vectors

$$
\mathbf{u} = (x, y, z) \in \mathbb{R}
$$

1. Norm: $|\mathbf{u}| = \sqrt{x^2 + y^2 + z^2}$
2. Direction: $\frac{\mathbf{u}}{|\mathbf{u}|}$

Inner product

$$
\textbf{u}_1\circ \textbf{u}_2=x_1x_2+y_1y_2+z_1z_2
$$

3

Cross product

$$
\textbf{u}_1 \times \textbf{u}_2 = |\textbf{u}_1| |\textbf{u}_2| \textit{sin}(\theta) \textbf{n}
$$

where **n** is the normal vector perpendicular to the plane containing \mathbf{u}_1 and \mathbf{u}_2 .

Stepping back: Two-body problem

Let m_i, m_j be the masses of two gravitational bodies at the positions $\textbf{r}_i, \textbf{r}_j \in \mathbb{R}^3$

Three definitions:

1. The Law of Gravitation: The force of *mⁱ* acting on *m^j* is

 $\mathbf{F}_{ij} = Gm_i m_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_i - \mathbf{r}_i|}$ |**r***j*−**r***ⁱ* | 3

2. The Calculus:

2.1 The velocity of m_i is $\mathbf{v}_i = \frac{d\mathbf{r}_i}{dt}$

2.2 The acceleration of m_i is $a_i = \frac{dv_i}{dt}$

3. The second Law of Mechanics: $F = ma$ (Force is equal mass times acceleration)

The universal constant of gravitation *G* was estimated as 6*.*67408 · 10[−]¹¹*m*³*kg*[−]¹*s* −2 in 2014 [\[8\]](#page-32-0).

Put all together: Equation of motion

Derivation for the first body:

$$
\mathbf{F}_{ij} = Gm_i m_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}
$$
\n
$$
m_i \mathbf{a}_i = Gm_i m_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_i - \mathbf{r}_j|^3}
$$
\n
$$
\frac{d\mathbf{v}_i}{dt} = Gm_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}
$$
\n
$$
\frac{d^2 \mathbf{r}_i}{dt^2} = Gm_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}
$$
\n
$$
\frac{d^2 \mathbf{r}_i}{dt^2} = Gm_j \frac{\mathbf{r}_j - \mathbf{r}_i}{|\mathbf{r}_j - \mathbf{r}_i|^3}
$$

For the second body follows: $\frac{d^2\mathbf{r}_j}{dt^2} = Gm_j \frac{\mathbf{r}_1 - \mathbf{r}_j}{|\mathbf{r}_i - \mathbf{r}_j|}$ $|{\bf r}_i$ − ${\bf r}_j|^3$

Note that we used Newton's law of universal gravitation [\[9\]](#page-32-1).

The *N*-body problem The force for body *mⁱ* $\mathbf{F}_i = \sum_{i=1}^{n}$ *j*=1*,i*6=*j* $\mathbf{F}_{ij} = \sum_{i=1}^{n}$ *j*=1*,,i≠j Gm_j* $\frac{\mathbf{r}_j - \mathbf{r}_i}{\|\mathbf{r}_i - \mathbf{r}_i\|}$ |**r***j*−**r***ⁱ* | 3

Law of Conservation:

1. Linear Momentum: $\sum_{i=1}^{n} m_i \mathbf{v}_i = M_0$ $i=1$

2. Center of Mass:
$$
\sum_{i=1}^{n} m_i \mathbf{r}_i = M_0 t + M_1
$$

3. Angular Momentum:
$$
\sum_{i=1}^{n} m_i(\mathbf{r}_i \times \mathbf{v}_i) = \mathbf{c}
$$

4. Energy: T-U=h with
\n
$$
T = \frac{1}{2} \sum_{i=1}^{n} m_i \mathbf{v}_i \circ \mathbf{v}_i, U = \sum_{i=1}^{n} \sum_{j=1}^{n} G \frac{m_i m_j}{|\mathbf{r}_i - \mathbf{r}_j|}
$$

More details: Simulations [\[2\]](#page-30-0) and Astrophysics [\[1\]](#page-30-1).

|

Algorithm

Complexity of force computation

Force computation: Direct sum

```
for(size t i = 0; i < bodies.size(); i++)
for(size t j = 0; j < bodies.size(); j++)
//Compute forces
```
Advantage:

Robust, accurate, and completely general

Disadvantage:

- 1. Computational cost per body $\mathcal{O}(n)$
- 2. Computational cost for all bodies $O(n^2)$

Tree-based codes or the Barnes-Hut method [\[3\]](#page-30-2) reduce the computational costs to $\mathcal{O}(n \log(n))$. More details [\[6\]](#page-31-0).

Update of positions

Assume we have computed the forces already, using the direct sum approach and now we want to compute the evolution of the system over the time *T*:

Discretization in time:

- \triangleright Δt the uniform time step size
- \blacktriangleright *t*₀ the beginning of the evolution
- \blacktriangleright *T* the final time of the evolution
- \triangleright *k* the time steps such that $k\Delta t = T$

Question: How can we compute the derivatives *dt* and *dt*² of the velocity **v** and the acceleration **a** of a body?

Finite difference and Euler method

Finite difference

We can use a finite difference method to approximate the derivation by

$$
u'(x) \approx \frac{u(x+h)-u(x)}{h}
$$

The Euler method

We use the finite difference scheme to approximate the derivations by

$$
\mathbf{a}_i(t_k) = \frac{\mathbf{F}_i}{m_i} = \frac{\mathbf{v}_i(t_k) - \mathbf{v}_i(t_k - 1)}{\Delta t}
$$
(1)

$$
\mathbf{v}_i(t_k) = \frac{\mathbf{r}_i(t_{k+1}) - \mathbf{r}_i(t_k)}{\Delta t}
$$
(2)

More details [\[10,](#page-33-0) [7,](#page-32-2) [5\]](#page-31-1)

Compute the velocity and updated position

Velocity

$$
\mathbf{v}_i(t_k) = \mathbf{v}_i(t_{k-1}) + \Delta t \frac{\mathbf{F}_i}{m_i} \text{ using (1)}
$$

Updated position

$$
\mathbf{r}_i(t_{k+1}) = \mathbf{r}_{t_k} + \Delta t \mathbf{v}_i(t_k) \text{ using (2)}
$$

Note that we used easy methods to update the positions and more sophisticated methods, *e.g.* Crank–Nicolson method [\[4\]](#page-31-2), are available

[Structs](#page-15-0)

Looking at the data structure²

For the *N*-body simulations, we need three dimensional vectors having

 \blacktriangleright *x* Coordinate ► *y* Coordinate ▶ *z* Coordinate

Initialization

struct vector $v = \{ .x=1, .y=1, .z=1 \};$ struct vector $v1 = \{1, 1, 1\}$:

Reading/Writing elements

std::cout << v.x << std:endl;

v.z=42;

² <https://en.cppreference.com/w/c/language/struct>

Constructor³

Assign initial values

```
struct A
{
    int x;
    A(int x = 1): x(x) { }};
```
A constructor has a

 \blacktriangleright Name A

- \blacktriangleright Arguments int $x = 1$
- \blacktriangleright Assignment : $x(x)$

Now struct A a; is equivalent to struct A \overline{a} = {1};

³ https://en.cppreference.com/w/cpp/language/default_constructor

Access specifiers⁴

```
struct A
{
    public:
    A(int x = 1): x(x) \{ \};private:
    int x;
};
```
 \blacktriangleright public - The function and members have public access

 \triangleright private - The function and members are only accessible within the struct

⁴ https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers⁵: Example

```
struct A
{
    public:
    A(int x = 1): x(x) \{ \};private:
    int x;
};
A a = A(10);
// Will not work since x is declared private
A \cdot x = 1:
```
Solution: Providing public method to read and write the varibale a.

⁵ https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers⁶: Access methods

```
struct A
{
    public:
    A(int x = 1): x(x) {};
    // So-called get method
    int getX(){ return x; }
    // So-called set method
    void setX(int value) { x = vlane; }private:
    int x;
};
```
⁶ https://en.cppreference.com/w/cpp/language/operator_member_access

Functions⁸

Compute the norm of the vector

```
#include <cmath>
struct vector2 {
double x, y, z;
vector2(double x = 0, double y=0, double z=0): x(x), y(y), z(z) {}
double norm(){ return std::sqrt(x*x+yy+zy+z); }
}
```
Usage

```
struct vector2 v;
std::count \le v.norm() \le std::end1:
```
#include <cmath>7 provides mathematical expressions

```
7
https://en.cppreference.com/w/cpp/header/cmath
8
https://en.cppreference.com/w/cpp/language/functions
```
[Generic programming](#page-22-0)

Why we need generic functions?

Example

```
//Compute the sum of two double values
double add(double a, double b) {
return a + b;
}
//Compute the sum of two float values
float add(float a, float b) {
return a + b;
}
```
Reasons:

- \blacktriangleright We have less redundant code
- \blacktriangleright The C++ standard library makes large usage of generic programming, *e.g.* std::vector<double>, std::vector<float>

Function template⁹ Writing a generic function:

```
template <typename T>
T add(T a, T b)
{
return a + b;
}
```
Using the generic function:

 $std::count \leq add \leq double \geq (2.0, 1.0) \leq state \leq std::end1;$ $std::count \leq add*int*>(2,1) \leq stat::end1;$ $std::count \leq add \leq float>(2.0, 1.0) \leq stat::end1;$

Additional way to use the generic function:

 $std::count \leq add(2,1) \leq stat::end1;$

⁹ https://en.cppreference.com/w/cpp/language/function_template

Generic structs¹⁰

Writing a generic vector type

```
template <typename T>
struct vector {
T x;
T y;
T z;
};
```
Using a generic vector type

```
struct vector < double > vd = \{1.5, 2.0, 3.25\};
struct vector <float > vf = \{1.25, 2.0, 3.5\};
struct vector \langle \text{int} \rangle vi = \{1, 2, 3\};
```
¹⁰<https://en.cppreference.com/w/cpp/language/templates>

Example

Generic struct having functions

```
#include <cmath >
template <typename T>
struct vector {
T x , y , z;
vector( T x = 0, T y=0, T z=0): x(x), y(y), z(z) {};
T norm() { return std::sqrt(x*x+y*y+z*z);}
T cross(struct vector <T> b)
{return x*b.x+y*b.y+z*b.z;}};
```
What we need to define the vector data structure:

[Summary](#page-27-0)

Summary

After this lecture, you should know

- ▶ *N*-Body simulations
- \blacktriangleright Structs
- \blacktriangleright Generic programming (Templates)

Further reading:

- \triangleright C₊₊ Lecture 2 Template Programming¹¹
- \triangleright C++ Lecture 4 Template Meta Programming¹²

¹¹<https://www.youtube.com/watch?v=iU3wsiJ5mts> ¹²<https://www.youtube.com/watch?v=6PWUByLZO0g>

[References](#page-29-0)

References I

- [1] Sverre Aarseth, Christopher Tout, and Rosemary Mardling. *The Cambridge N-body lectures*, volume 760. Springer, 2008.
- [2] Sverre J Aarseth. *Gravitational N-body simulations: tools and algorithms*. Cambridge University Press, 2003.
- [3] Josh Barnes and Piet Hut. A hierarchical o (n log n) force-calculation algorithm. *nature*, 324(6096):446, 1986.

References II

[4] John Crank and Phyllis Nicolson.

A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type.

In *Mathematical Proceedings of the Cambridge Philosophical Society*, volume 43, pages 50–67. Cambridge University Press, 1947.

[5] Leonhard Euler.

Institutionum calculi integralis, volume 1. impensis Academiae imperialis scientiarum, 1824.

[6] Donald Ervin Knuth.

The art of computer programming: Fundamental Algorithms, volume 1. Pearson Education, 1968.

References III

[7] Randall J LeVeque.

Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, volume 98. Siam, 2007.

[8] Peter J Mohr, David B Newell, and Barry N Taylor. Codata recommended values of the fundamental physical constants: 2014. *Journal of Physical and Chemical Reference Data*, 45(4):043102, 2016.

[9] Isaac Newton. *Philosophiae naturalis principia mathematica*, volume 1. G. Brookman, 1833.

References IV

[10] John C Strikwerda.

Finite difference schemes and partial differential equations, volume 88.

Siam, 2004.