
Math 4997-3
Lecture 4: N-Body simulations, Structs, Classes, and

generic functions

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Reminder

N-body simulations

Structs

Generic programming

Summary

References

Reminder

Lecture 3

What you should know from last lecture
I Iterators
I Lists
I Library algorithms
I Numerical limits
I Reading and Writing files

N-body simulations

N-body simulations1

The N-body problem is the physically problem of
predicting the individual motions of a group of celestial
objects interacting with each other gravitationally.
Informal description:
Predict the interactive forces and true orbital motions for
all future times of a group of celestial bodies. We assume
that we have their quasi-steady orbital properties, e.g.
instantaneous position, velocity and time.

1By Michael L. Umbricht - Own work, CC BY-SA 4.0

Recall: Vectors and basic operations

Vectors
u = (x, y, z) ∈ R3

1. Norm: |u| =
√

x2 + y2 + z2

2. Direction: u
|u|

Inner product
u1 ◦ u2 = x1x2 + y1y2 + z1z2

Cross product

u1 × u2 = |u1||u2|sin(θ)n

where n is the normal vector perpendicular to the plane
containing u1 and u2.

Stepping back: Two-body problem
Let mi , mj be the masses of two gravitational bodies at the
positions ri , rj ∈ R3

Three definitions:
1. The Law of Gravitation: The force of mi acting on mj

is
Fij = Gmimj

rj−ri
|rj−ri |3

2. The Calculus:
2.1 The velocity of mi is vi = dri

dt
2.2 The acceleration of mi is ai = dvi

dt

3. The second Law of Mechanics:
F = ma (Force is equal mass times acceleration)

The universal constant of gravitation G was estimated as
6.67408 · 10−11m3kg−1s−2 in 2014 [8].

Put all together: Equation of motion
Derivation for the first body:

Fij = Gmimj
rj − ri

|rj − ri|3

miai = Gmimj
rj − ri

|ri − rj|3
dvi

dt = Gmj
rj − ri

|rj − ri|3

d2ri

dt2 = Gmj
rj − ri

|rj − ri|3

mi mj
Fi Fj

For the second body follows: d2rj
dt2 = Gmj

r1−rj
|ri−rj |3

Note that we used Newton’s law of universal
gravitation [9].

The N-body problem
The force for body mi

Fi =
n∑

j=1,i 6=j
Fij =

n∑
j=1,,i 6=j

Gmj
rj−ri

|rj−ri |3

Law of Conservation:
1. Linear Momentum:

n∑
i=1

mivi = M0

2. Center of Mass:
n∑

i=1
miri = M0t + M1

3. Angular Momentum:
n∑

i=1
mi(ri × vi) = c

4. Energy: T-U=h with
T = 1

2

n∑
i=1

mivi ◦ vi , U =
n∑

i=1

n∑
j=1

G mimj
|ri−rj |

More details: Simulations [2] and Astrophysics [1].

Algorithm

Compute the forces

Update the positions

Collect statistical information

Complexity of force computation
Force computation: Direct sum
for(size_t i = 0; i < bodies.size(); i++)
for(size_t j = 0; j < bodies.size(); j++)
//Compute forces

Advantage:
Robust, accurate, and completely general

Disadvantage:
1. Computational cost per body O(n)
2. Computational cost for all bodies O(n2)

Tree-based codes or the Barnes-Hut method [3] reduce
the computational costs to O(n log(n)). More details [6].

Update of positions

Assume we have computed the forces already, using the
direct sum approach and now we want to compute the
evolution of the system over the time T :
Discretization in time:
I ∆t the uniform time step size
I t0 the beginning of the evolution
I T the final time of the evolution
I k the time steps such that k∆t = T

Question: How can we compute the derivatives dt and dt2

of the velocity v and the acceleration a of a body?

Finite difference and Euler method
Finite difference
We can use a finite difference method to approximate the
derivation by

u′(x) ≈ u(x+h)−u(x)
h

The Euler method
We use the finite difference scheme to approximate the
derivations by

ai(tk) = Fi

mi
= vi(tk) − vi(tk − 1)

∆t (1)

vi(tk) = ri(tk+1) − ri(tk)
∆t (2)

More details [10, 7, 5]

Compute the velocity and updated position

Velocity

vi(tk) = vi(tk−1) + ∆t Fi
mi

using (1)

Updated position

ri(tk+1) = rtk + ∆tvi(tk) using (2)

Note that we used easy methods to update the positions
and more sophisticated methods, e.g. Crank–Nicolson
method [4], are available

Structs

Looking at the data structure2

For the N-body simulations, we need three dimensional
vectors having

I x Coordinate
I y Coordinate
I z Coordinate

struct vector {
double x;
double y;
double z;
};

Initialization
struct vector v = {.x=1, .y=1, .z=1};
struct vector v1 = {1,1,1};

Reading/Writing elements
std::cout << v.x << std:endl;
v.z=42;

2https://en.cppreference.com/w/c/language/struct

https://en.cppreference.com/w/c/language/struct

Constructor3

Assign initial values
struct A
{

int x;
A(int x = 1): x(x) {};

};

A constructor has a
I Name A

I Arguments int x = 1

I Assignment : x(x)

Now struct A a; is equivalent to struct A a = {1};

3https://en.cppreference.com/w/cpp/language/default_constructor

https://en.cppreference.com/w/cpp/language/default_constructor

Access specifiers4

struct A
{

public:
A(int x = 1): x(x) {};

private:
int x;

};

I public - The function and members have public
access

I private - The function and members are only
accessible within the struct

4https://en.cppreference.com/w/cpp/language/operator_member_access

https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers5: Example

struct A
{

public:
A(int x = 1): x(x) {};

private:
int x;

};

A a = A(10);
// Will not work since x is declared private
A.x = 1;

Solution: Providing public method to read and write the
varibale a.

5https://en.cppreference.com/w/cpp/language/operator_member_access

https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers6: Access methods

struct A
{

public:
A(int x = 1): x(x) {};

// So-called get method
int getX(){ return x;}

// So-called set method
void setX(int value){ x = vlaue;}

private:
int x;

};

6https://en.cppreference.com/w/cpp/language/operator_member_access

https://en.cppreference.com/w/cpp/language/operator_member_access

Functions8

Compute the norm of the vector
#include <cmath>
struct vector2 {
double x , y , z;
vector2(double x = 0, double y=0, double z=0)

: x(x) , y(y) ,z(z) {}
double norm(){ return std::sqrt(x*x+y*y+z*z);}
}

Usage
struct vector2 v;
std::cout << v.norm() << std::endl;

#include <cmath>7 provides mathematical expressions
7https://en.cppreference.com/w/cpp/header/cmath
8https://en.cppreference.com/w/cpp/language/functions

https://en.cppreference.com/w/cpp/header/cmath
https://en.cppreference.com/w/cpp/language/functions

Generic programming

Why we need generic functions?
Example
//Compute the sum of two double values
double add(double a, double b) {
return a + b;
}
//Compute the sum of two float values
float add(float a, float b) {
return a + b;
}

Reasons:
I We have less redundant code
I The C++ standard library makes large usage of

generic programming, e.g. std::vector<double>,
std::vector<float>

Function template9

Writing a generic function:
template<typename T>
T add(T a, T b)
{
return a + b;
}

Using the generic function:
std::cout << add<double >(2.0,1.0) << std::endl;
std::cout << add<int>(2,1) << std::endl;
std::cout << add<float >(2.0,1.0) << std::endl;

Additional way to use the generic function:
std::cout << add(2,1) << std::endl;

9https://en.cppreference.com/w/cpp/language/function_template

https://en.cppreference.com/w/cpp/language/function_template

Generic structs10

Writing a generic vector type
template<typename T>
struct vector {
T x;
T y;
T z;
};

Using a generic vector type
struct vector<double> vd = {1.5,2.0,3.25};
struct vector<float> vf = {1.25,2.0,3.5};
struct vector<int> vi = {1,2,3};

10https://en.cppreference.com/w/cpp/language/templates

https://en.cppreference.com/w/cpp/language/templates

Example
Generic struct having functions
#include <cmath>

template<typename T>
struct vector {
T x , y , z;
vector(T x = 0, T y=0, T z=0)

: x(x) , y(y) ,z(z) {};
T norm() { return std::sqrt(x*x+y*y+z*z);}
T cross(struct vector<T> b)
{return x*b.x+y*b.y+z*b.z;}
};

What we need to define the vector data
structure:
I Structs
I Generic functions

Summary

Summary

After this lecture, you should know
I N-Body simulations
I Structs
I Generic programming (Templates)

Further reading:
I C++ Lecture 2 - Template Programming11

I C++ Lecture 4 - Template Meta Programming12

11https://www.youtube.com/watch?v=iU3wsiJ5mts
12https://www.youtube.com/watch?v=6PWUByLZO0g

https://www.youtube.com/watch?v=iU3wsiJ5mts
https://www.youtube.com/watch?v=6PWUByLZO0g

References

References I
[1] Sverre Aarseth, Christopher Tout, and Rosemary

Mardling.
The Cambridge N-body lectures, volume 760.
Springer, 2008.

[2] Sverre J Aarseth.
Gravitational N-body simulations: tools and
algorithms.
Cambridge University Press, 2003.

[3] Josh Barnes and Piet Hut.
A hierarchical o (n log n) force-calculation algorithm.
nature, 324(6096):446, 1986.

References II
[4] John Crank and Phyllis Nicolson.

A practical method for numerical evaluation of
solutions of partial differential equations of the
heat-conduction type.
In Mathematical Proceedings of the Cambridge
Philosophical Society, volume 43, pages 50–67.
Cambridge University Press, 1947.

[5] Leonhard Euler.
Institutionum calculi integralis, volume 1.
impensis Academiae imperialis scientiarum, 1824.

[6] Donald Ervin Knuth.
The art of computer programming: Fundamental
Algorithms, volume 1.
Pearson Education, 1968.

References III
[7] Randall J LeVeque.

Finite difference methods for ordinary and partial
differential equations: steady-state and
time-dependent problems, volume 98.
Siam, 2007.

[8] Peter J Mohr, David B Newell, and Barry N Taylor.
Codata recommended values of the fundamental
physical constants: 2014.
Journal of Physical and Chemical Reference Data,
45(4):043102, 2016.

[9] Isaac Newton.
Philosophiae naturalis principia mathematica,
volume 1.
G. Brookman, 1833.

References IV
[10] John C Strikwerda.

Finite difference schemes and partial differential
equations, volume 88.
Siam, 2004.

	Reminder
	N-body simulations
	Structs
	Generic programming
	Summary
	References

