Math 4997-3

Lecture 4: N-Body simulations, Structs, Classes, and
generic functions

Patrick Diehl .

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial- @@@
NoDerivatives 4.0 International” license. 5y No o


https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Reminder

N-body simulations
Structs

Generic programming
Summary

References



Reminder



Lecture 3

lterators

Lists

Library algorithms
Numerical limits

Reading and Writing files



N-body simulations



N-body simulations'

The N-body problem is the physically problem of
predicting the individual motions of a group of celestial
objects interacting with each other gravitationally.

Predict the interactive forces and true orbital motions for
all future times of a group of celestial bodies. We assume
that we have their quasi-steady orbital properties, e.g.
instantaneous position, velocity and time.

L By Michael L. Umbricht - Own work, CC BY-SA 4.0



Recall: Vectors and basic operations

u=(x,y,z) e R

Norm: |u| = /X2 + y2 + 22

Direction: ﬁ

U; olUy = X1 Xo + V1Yo + 2122

U; X Uy = |uy||ug|sin(d)n

where n is the normal vector perpendicular to the plane
containing u; and us.



Stepping back: Two-body problem

Let m;, m; be the masses of two gravitational bodies at the
positions r;, r; € R?

The Law of Gravitation: The force of m; acting on m;
is
_ m. it
FU - Gm’m/|rj—r,-\3
The Calculus:
2.1 The velocity of m; is v; =
2.2 The acceleration of m; is a; = 4
The second Law of Mechanics:
F = ma (Force is equal mass times acceleration)

The universal constant of gravitation G was estimated as
6.67408 - 10~ 1'm3kg—'s=2 in 2014 [8].



Put all together: Equation of motion
Derivation for the first body:

r—r
/ ]
F,'j = Gm,'mj—3
v — ¥il
J ]
m;a; = Gm;m; 3
| - jl @
= ij 3
dt Itj — i
d’r; m r—r
at> T — 13
d2l’j I'1—I’j
For the second body follows: — = ij|r,7r,|3
i—fj

Note that we used Newton’s law of universal
gravitation [9].



The N-body problem

n
Linear Momentum: > m;v; = M,

i=1

n
Center of Mass: > m;r; = Myt + M,
i=1
n
Angular Momentum: > m;(r; x vi) = ¢
i=1

Energy T-U=h with
— 1zm,V,OV,,U ZZG‘:M:;‘

i=1j=1

More details: Simulations [2] and Astrophysics [1].



Algorithm

Compute the forces

Update the positions

Collect statistical information




Complexity of force computation

0; i < bodies.size(); i++)
0; j < bodies.size(); j++)

(size_t i
(size_t j

Robust, accurate, and completely general

Computational cost per body O(n)
Computational cost for all bodies O(n?)

Tree-based codes or the Barnes-Hut method [3] reduce
the computational costs to O(nlog(n)). More details [6].



Update of positions

Assume we have computed the forces already, using the
direct sum approach and now we want to compute the
evolution of the system over the time T:

At the uniform time step size

fo the beginning of the evolution

T the final time of the evolution

k the time steps such that kAt =T

Question: How can we compute the derivatives dt and dt?
of the velocity v and the acceleration a of a body?



Finite difference and Euler method

We can use a finite difference method to approximate the
derivation by

U (X) ~ u(x-i-hg—u(x)

We use the finite difference scheme to approximate the
derivations by
Fi vi(t) —vi(tk — 1)
a/(tk> m; At ( )
_ Niltki) — (k)
JAN4

V,'(tk>

More details [10, 7, 5]

(@)




Compute the velocity and updated position

Vi(tk) = Vi(tk—1) + At% using (1)

Fi(tkr1) = ry, + Atv(t,) using (2)

Note that we used easy methods to update the positions
and more sophisticated methods, e.g. Crank—Nicolson
method [4], are available



Structs



Looking at the data structure?

For the N-body simulations, we need three dimensional
vectors having

vector {
x Coordinate x;
y Coordinate s

Z;

z Coordinate };

vector v = {.x=1, .y=1, .z=1};
vector vl = {1,1,1};

std::cout << v.x << std:endl;
v.z=42;

2https ://en.cppreference.com/w/c/language/struct


https://en.cppreference.com/w/c/language/struct

Constructor®

A
{
X3

A( x = 1): x(x) {};
Jg

Name a

Arguments x =1

Assignment : x(x)
Now A a; is equivalent to A a = {1};

3 https://en.cppreference.com/w/cpp/language/default_constructor


https://en.cppreference.com/w/cpp/language/default_constructor

Access specifiers*

A

public:
A( x = 1): x(x) {};

private:
X5

public - The function and members have public
access

private - The function and members are only
accessible within the struct

4https ://en.cppreference.com/w/cpp/language/operator_member_access


https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers®: Example

A
{
public:
A( x = 1): x(x) {};
private:
X;
1

=
)
I
=
~
=
(@]
p—

A.x = 1;

Solution: Providing pub1ic method to read and write the
varibale a.

https://en.cppreference.com/w/cpp/language/operator_member_access


https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers®: Access methods

struct A

{

public:
ACint x = 1): x(x) {};

// So-called get method
int getX(){ return x;}

// So-called set method
void setX(int value){ x = vlaue;}

private:
int x;

https://en.cppreference.com/w/cpp/language/operator_member_access


https://en.cppreference.com/w/cpp/language/operator_member_access

Functions®

<cmath>
vector2 {
X , ¥ , Z;

vector2( x =0, y=0, z=0)
x(x) , y(y) ,z(z) {}
norm () { std::sqrt (x*x+y*y+z*z);}
}

vector2 v;
std::cout << v.norm() << std::endl;

<cmath>’ provides mathematical expressions

7https://en.cppreference.com/w/cpp/header/cmath

https://en.cppreference.com/w/cpp/language/functions


https://en.cppreference.com/w/cpp/header/cmath
https://en.cppreference.com/w/cpp/language/functions

Generic programming



Why we need generic functions?

add ( a, b) {
a + b;
}
add ( a, b) {
a + b;
+

We have less redundant code

The C++ standard library makes large usage of
generic programming, €.g. std: :vector< >,
std: :vector< >



Function template®
Writing a generic function:

template<typename T>
T add(T a, T b)
{

return a + b;

}

Using the generic function:

std::cout << add<double>(2.0,1.0) << std::endl;

std::cout << add<int>(2,1) << std::endl;
std::cout << add<float>(2.0,1.0) << std::endl;

Additional way to use the generic function:

std::cout << add(2,1) << std::endl;

9https ://en.cppreference.com/w/cpp/language/function_template


https://en.cppreference.com/w/cpp/language/function_template

Generic structs'®

Writing a generic vector type

template<typename T>
struct vector {

T x;

T y;

T z;

g

Using a generic vector type

struct vector<double> vd = {1.5,2.0,3.25%};
struct vector<float> vf = {1.25,2.0,3.5};
struct vector<int> vi = {1,2,3};

1 Ohttps ://en.cppreference.com/w/cpp/language/templates


https://en.cppreference.com/w/cpp/language/templates

Example

<cmath>

template<typename T>
vector {
Tx , vy, z;
vector( T x = 0, T y=0, T z=0)
x(x) , y(y) ,z(2) {};

T norm() { std::sqrt (x*x+y*y+z*z);}
T cross( vector<T> b)
{ x*b.x+y*xb.y+zxb.z;}
3
Structs

Generic functions



Summary



Summary

N-Body simulations
Structs
Generic programming (Templates)

C++ Lecture 2 - Template Programming™’
C++ Lecture 4 - Template Meta Programming'?

1
https://www.youtube.com/watch?v=iU3wsiJ5mts

https://www.youtube.com/watch?v=6PWUByLZ00g


https://www.youtube.com/watch?v=iU3wsiJ5mts
https://www.youtube.com/watch?v=6PWUByLZO0g

References



References |

The Cambridge N-body lectures, volume 760.

Gravitational N-body simulations: tools and
algorithms.

A hierarchical o (n log n) force-calculation algorithm.



References Il

A practical method for numerical evaluation of
solutions of partial differential equations of the
heat-conduction type.

Institutionum calculi integralis, volume 1.

The art of computer programming: Fundamental
Algorithms, volume 1.



References ||

Finite difference methods for ordinary and partial
differential equations: steady-state and
time-dependent problems, volume 98.

Codata recommended values of the fundamental
physical constants: 2014.

Philosophiae naturalis principia mathematica,
volume 1.



References |V

Finite difference schemes and partial differential
equations, volume 88.



	Reminder
	N-body simulations
	Structs
	Generic programming
	Summary
	References

