
Math 4997-3
Lecture 4: N-Body simulations, Structs, Classes, and generic

functions

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

Reminder

N-body simulations

Structs

Generic programming

Summary

References

Reminder

Lecture 3

What you should know from last lecture
I Iterators
I Lists
I Library algorithms
I Numerical limits
I Reading and Writing files

Notes

Notes

Notes

Notes

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

N-body simulations

N-body simulations1

The N-body problem is the physically problem of predicting the
individual motions of a group of celestial objects interacting with
each other gravitationally.

Informal description:
Predict the interactive forces and true orbital motions for all future
times of a group of celestial bodies. We assume that we have their
quasi-steady orbital properties, e.g. instantaneous position, velocity
and time.

1By Michael L. Umbricht - Own work, CC BY-SA 4.0

Recall: Vectors and basic operations

Vectors
u = (x , y , z) ∈ R3

1. Norm: |u| =
√

x2 + y2 + z2

2. Direction: u
|u|

Inner product
u1 ◦ u2 = x1x2 + y1y2 + z1z2

Cross product

u1 × u2 = |u1||u2|sin(θ)n

where n is the normal vector perpendicular to the plane containing
u1 and u2.

Stepping back: Two-body problem

Let mi , mj be the masses of two gravitational bodies at the
positions ri , rj ∈ R3

Three definitions:
1. The Law of Gravitation: The force of mi acting on mj is

Fij = Gmimj
rj−ri

|rj−ri |3

2. The Calculus:
2.1 The velocity of mi is vi = dri

dt
2.2 The acceleration of mi is ai = dvi

dt

3. The second Law of Mechanics:
F = ma (Force is equal mass times acceleration)

The universal constant of gravitation G was estimated as
6.67408 · 10−11m3kg−1s−2 in 2014 [8].

Notes

Notes

Notes

Notes

Put all together: Equation of motion

Derivation for the first body:

Fij = Gmimj
rj − ri

|rj − ri |3

miai = Gmimj
rj − ri

|ri − rj |3
dvi
dt = Gmj

rj − ri
|rj − ri |3

d2ri
dt2 = Gmj

rj − ri
|rj − ri |3

mi mj
Fi Fj

For the second body follows: d2rj
dt2 = Gmj

r1−rj
|ri −rj |3

Note that we used Newton’s law of universal gravitation [9].

The N-body problem

The force for body mi

Fi =
n∑

j=1,i 6=j
Fij =

n∑
j=1,,i 6=j

Gmj
rj−ri

|rj−ri |3

Law of Conservation:
1. Linear Momentum:

n∑
i=1

mivi = M0

2. Center of Mass:
n∑

i=1
miri = M0t + M1

3. Angular Momentum:
n∑

i=1
mi(ri × vi) = c

4. Energy: T-U=h with
T = 1

2

n∑
i=1

mivi ◦ vi , U =
n∑

i=1

n∑
j=1

G mi mj
|ri −rj |

More details: Simulations [2] and Astrophysics [1].

Algorithm

Compute the forces

Update the positions

Collect statistical information

Complexity of force computation

Force computation: Direct sum
for(size_t i = 0; i < bodies.size(); i++)
for(size_t j = 0; j < bodies.size(); j++)
//Compute forces

Advantage:
Robust, accurate, and completely general

Disadvantage:
1. Computational cost per body O(n)
2. Computational cost for all bodies O(n2)

Tree-based codes or the Barnes-Hut method [3] reduce the
computational costs to O(n log(n)). More details [6].

Notes

Notes

Notes

Notes

Update of positions

Assume we have computed the forces already, using the direct sum
approach and now we want to compute the evolution of the system
over the time T :

Discretization in time:
I ∆t the uniform time step size
I t0 the beginning of the evolution
I T the final time of the evolution
I k the time steps such that k∆t = T

Question: How can we compute the derivatives dt and dt2 of the
velocity v and the acceleration a of a body?

Finite difference and Euler method

Finite difference
We can use a finite difference method to approximate the
derivation by

u′(x) ≈ u(x+h)−u(x)
h

The Euler method
We use the finite difference scheme to approximate the derivations
by

ai(tk) = Fi
mi

= vi(tk) − vi(tk − 1)
∆t (1)

vi(tk) = ri(tk+1) − ri(tk)
∆t (2)

More details [10, 7, 5]

Compute the velocity and updated position

Velocity

vi(tk) = vi(tk−1) + ∆t Fi
mi

using (1)

Updated position

ri(tk+1) = rtk + ∆tvi(tk) using (2)

Note that we used easy methods to update the positions and more
sophisticated methods, e.g. Crank–Nicolson method [4], are
available

Structs

Notes

Notes

Notes

Notes

Looking at the data structure2

For the N-body simulations, we need three dimensional vectors
having

I x Coordinate
I y Coordinate
I z Coordinate

struct vector {
double x;
double y;
double z;
};

Initialization
struct vector v = {.x=1, .y=1, .z=1};
struct vector v1 = {1,1,1};

Reading/Writing elements
std::cout << v.x << std:endl;
v.z=42;

2
https://en.cppreference.com/w/c/language/struct

Constructor3

Assign initial values
struct A
{

int x;
A(int x = 1): x(x) {};

};

A constructor has a
I Name A

I Arguments int x = 1

I Assignment : x(x)

Now struct A a; is equivalent to struct A a = {1};

3
https://en.cppreference.com/w/cpp/language/default_constructor

Access specifiers4

struct A
{

public:
A(int x = 1): x(x) {};

private:
int x;

};

I public - The function and members have public access
I private - The function and members are only accessible within

the struct

4
https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers5: Example

struct A
{

public:
A(int x = 1): x(x) {};

private:
int x;

};

A a = A(10);
// Will not work since x is declared private
A.x = 1;

Solution: Providing public method to read and write the varibale a.

5
https://en.cppreference.com/w/cpp/language/operator_member_access

Notes

Notes

Notes

Notes

https://en.cppreference.com/w/c/language/struct
https://en.cppreference.com/w/cpp/language/default_constructor
https://en.cppreference.com/w/cpp/language/operator_member_access
https://en.cppreference.com/w/cpp/language/operator_member_access

Access specifiers6: Access methods

struct A
{

public:
A(int x = 1): x(x) {};

// So-called get method
int getX(){ return x;}

// So-called set method
void setX(int value){ x = vlaue;}

private:
int x;

};

6
https://en.cppreference.com/w/cpp/language/operator_member_access

Functions8

Compute the norm of the vector
#include <cmath>
struct vector2 {
double x , y , z;
vector2(double x = 0, double y=0, double z=0)

: x(x) , y(y) ,z(z) {}
double norm(){ return std::sqrt(x*x+y*y+z*z);}
}

Usage
struct vector2 v;
std::cout << v.norm() << std::endl;

#include <cmath>7 provides mathematical expressions

7
https://en.cppreference.com/w/cpp/header/cmath

8
https://en.cppreference.com/w/cpp/language/functions

Generic programming

Why we need generic functions?

Example
//Compute the sum of two double values
double add(double a, double b) {
return a + b;
}
//Compute the sum of two float values
float add(float a, float b) {
return a + b;
}

Reasons:
I We have less redundant code
I The C++ standard library makes large usage of generic

programming, e.g. std::vector<double>, std::vector<float>

Notes

Notes

Notes

Notes

https://en.cppreference.com/w/cpp/language/operator_member_access
https://en.cppreference.com/w/cpp/header/cmath
https://en.cppreference.com/w/cpp/language/functions

Function template9

Writing a generic function:
template<typename T>
T add(T a, T b)
{
return a + b;
}

Using the generic function:
std::cout << add<double >(2.0,1.0) << std::endl;
std::cout << add<int>(2,1) << std::endl;
std::cout << add<float >(2.0,1.0) << std::endl;

Additional way to use the generic function:
std::cout << add(2,1) << std::endl;

9
https://en.cppreference.com/w/cpp/language/function_template

Generic structs10

Writing a generic vector type
template<typename T>
struct vector {
T x;
T y;
T z;
};

Using a generic vector type
struct vector<double> vd = {1.5,2.0,3.25};
struct vector<float> vf = {1.25,2.0,3.5};
struct vector<int> vi = {1,2,3};

10
https://en.cppreference.com/w/cpp/language/templates

Example

Generic struct having functions
#include <cmath>

template<typename T>
struct vector {
T x , y , z;
vector(T x = 0, T y=0, T z=0)

: x(x) , y(y) ,z(z) {};
T norm() { return std::sqrt(x*x+y*y+z*z);}
T cross(struct vector<T> b)
{return x*b.x+y*b.y+z*b.z;}
};

What we need to define the vector data structure:
I Structs
I Generic functions

Summary

Notes

Notes

Notes

Notes

https://en.cppreference.com/w/cpp/language/function_template
https://en.cppreference.com/w/cpp/language/templates

Summary

After this lecture, you should know
I N-Body simulations
I Structs
I Generic programming (Templates)

Further reading:
I C++ Lecture 2 - Template Programming11

I C++ Lecture 4 - Template Meta Programming12

11
https://www.youtube.com/watch?v=iU3wsiJ5mts

12
https://www.youtube.com/watch?v=6PWUByLZO0g

References

References I
[1] Sverre Aarseth, Christopher Tout, and Rosemary Mardling.

The Cambridge N-body lectures, volume 760.
Springer, 2008.

[2] Sverre J Aarseth.
Gravitational N-body simulations: tools and algorithms.
Cambridge University Press, 2003.

[3] Josh Barnes and Piet Hut.
A hierarchical o (n log n) force-calculation algorithm.
nature, 324(6096):446, 1986.

[4] John Crank and Phyllis Nicolson.
A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type.
In Mathematical Proceedings of the Cambridge Philosophical
Society, volume 43, pages 50–67. Cambridge University Press,
1947.

References II
[5] Leonhard Euler.

Institutionum calculi integralis, volume 1.
impensis Academiae imperialis scientiarum, 1824.

[6] Donald Ervin Knuth.
The art of computer programming: Fundamental Algorithms,
volume 1.
Pearson Education, 1968.

[7] Randall J LeVeque.
Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems,
volume 98.
Siam, 2007.

Notes

Notes

Notes

Notes

https://www.youtube.com/watch?v=iU3wsiJ5mts
https://www.youtube.com/watch?v=6PWUByLZO0g

References III
[8] Peter J Mohr, David B Newell, and Barry N Taylor.

Codata recommended values of the fundamental physical
constants: 2014.
Journal of Physical and Chemical Reference Data,
45(4):043102, 2016.

[9] Isaac Newton.
Philosophiae naturalis principia mathematica, volume 1.
G. Brookman, 1833.

[10] John C Strikwerda.
Finite difference schemes and partial differential equations,
volume 88.
Siam, 2004.

Notes

Notes

Notes

Notes

	Reminder
	N-body simulations
	Structs
	Generic programming
	Summary
	References

