
Math 4997-3
Lecture 14: Serial partition-based 1D heat equation

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

Reminder

Recap of the previous implementation

Introducing partitions

Swapping the partitions

New C++ and HPX features

Summary

References

Reminder

Lecture 13

What you should know from last lecture
I hpx::make_reday_future

I hpx::dataflow

I hpx::unwrapping

I hpx::shared_future

Notes

Notes

Notes

Notes

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


Recap of the previous implementation

Scaling results from previous example

0 0.2 0.4 0.6 0.8 1
·106

0

20

40

60

80

100

Grid points

Ex
ec

ut
io

n
tim

e

Stencil 2

1 CPU
2 CPU
4 CPU
6 CPU

Note that we need to control the grain size (the amount of work)
to get better scalability.

Introducing partitions

Goal of this week’s lectures

We will reuse the serial implementation of Lecture 12 and
I introduces a partitioning of the 1D grid into groups of grid

partitions
I which are handled at the same time.

So we can control the the amount of work performed (grain size)
to improve the scalability of our program.

Note that before, we had exact one discrete mesh point handle per
hpx::future and now we want to have multiple discrete mesh
points.

Notes

Notes

Notes

Notes



Generating partitions

x1 x2 x3 x4 x5 x6 x7 x8 x9

n1 n2 n3

Struct holding the data for each partition
struct partition_data
{
private:

std::vector<double> data_;
};

Data structure for the partitions I

struct partition_data
{

partition_data(std::size_t size = 0)
: data_(size)

{}

partition_data(std::size_t size, double int_value)
: data_(size)

{
double base_value =

double(int_value * size);
for (std::size_t i = 0; i != size; ++i)

data_[i] = base_value + double(i);
}

}

Data structure for the partitions II

struct partition_data
{

double& operator[](std::size_t idx) {
return data_[idx];

}

double operator[](std::size_t idx) const {
return data_[idx];

}

std::size_t size() const
{

return data_.size();
}

}

Swapping the partitions

Notes

Notes

Notes

Notes



New swapping scheme

x1 x2 x3 x4
U[0][0]

U[1][0]

U[0][0]

x1 x2 x3 x4
U[0][1]

U[1][1]

U[0][1]

t=1

t=2

t=3

Adapted class stepper

class stepper
{

// Our data for one time step
typedef partition_data partition;
typedef std::vector<partition > space;

std::vector<space> U(2);
for (space& s: U)

// np is the number of partitions
s.resize(np);

// Initial conditions: f(0, i) = i
for (std::size_t i = 0; i != np; ++i)

U[0][i] = partition_data(nx, double(i));

// Return the solution at time-step 'nt'.
return U[nt % 2];

}

New C++ and HPX features

Moving objects with std::move1

We use std::move to indicate that the object may be moved to
another object. This allows the efficient transfer of resources to
another object.

Example
std::string str = "Hello";
std::vector<std::string> v;

v.push_back(std::move(str));

Be aware of undefined states, but valid states
str.clear{} //Ok, since clear has no preconditions
str.back() //Undefined behavior if size()==0

1
https://en.cppreference.com/w/cpp/utility/move

Notes

Notes

Notes

Notes

https://en.cppreference.com/w/cpp/utility/move


Semaphore

Analogy
Imagine a public library lending books with no late fee. The have 5
copies of the Hitchhiker’s Guide to the Galaxy [1] to borrow. Five
people can borrow these copies and the library does not care to get
them back in a feasible amount of time, since they avoided to
introduce late fees. If one is waiting for a copy the copy will be
assigned to this person, but if none is waiting the copy just goes
back to the shelf until one asks for it.

The concept of semaphores was introduced by E. Dijkstra [2].
More details [3].

P and V operations on a semaphore objects

Variables
I maximum count
I current count

Operations
I Taking ownership with the wait function, which decrements

the semaphore. The so–called P operation from Dijkstra’s
paper.

I Releasing ownership with the signal function, the increments
the semaphore. The so–called V operation from Dijkstra’s
paper.

More details

P-Operation
If the wait function is called, the current count is decreased. If the
count is ≥ zero then the decrement just happens and the function
will return. If the count is zero the function will wait until one
other thread called the signal function.

V -Operation
If the signal function is called, the current count is increased. If
the count was zero before you called signal function and another
thread was blocked in wait then that thread will be executed. If
multiple threads are waiting, only one will be executed and the
reaming ones have to wait for another increment of the counter.

Semaphores in the C++ standard

We looked into std::mutex in Lecture 6, which is tied to one thread
and only one thread can lock or unlock the mutex. Any thread can
access the ownership on a semaphore.

The C++ standard does not define semaphores.

// Generate a semaphore with maximal count nd
hpx::lcos::local::sliding_semaphore sem(nd);

// Release ownership for t
sem.signal(t);

// Obtain ownership for t
sem.wait(t);

Notes

Notes

Notes

Notes



Summary

Summary

After this lecture, you should know
I Using the partitions to control the grain size
I std::move for moving objects
I Semaphores and hpx::lcos::local::sliding_semaphore

References

References I
[1] Douglas Adams.

The Hitchhiker’s Guide to the Galaxy Omnibus: A Trilogy in
Five Parts, volume 6.
Pan Macmillan, 2017.

[2] Edsger W Dijkstra.
Over de sequentialiteit van procesbeschrijvingen.
Trans. by Martien van der Burgt and Heather Lawrence. In,
1962.

[3] Allen Downey.
The little book of semaphores.
Green Tea Press, 2008.

Notes

Notes

Notes

Notes


	Reminder
	Recap of the previous implementation
	Introducing partitions
	Swapping the partitions
	New C++ and HPX features 
	Summary
	References

