Math 4997-3

Patrick Diehl .

https://wuw.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial- ®@@
NoDerivatives 4.0 International” license. By No ND

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Reminder

Heat equation

Serial implementation

Summary

References

Reminder

Lecture 12

What is HPX
Asynchronous programming using HPX
Shared memory parallelism using HPX

Heat equation

Heat equation

ou _ %u 4 Pu , du
E_O‘<ax2+ay2+az2)

where alpha is the diffusivity of the material.

u=aVu

The heat equation computes the flow of heat in a
homogeneous and isotropic medium.

More details [1].

Easiest case

ou __ . 0%
E—OKW, 0§X§L,t>0

The solution of the heat equation requires boundary
conditions

u(0,t) = uo
u(L,t) =uL
u(x,0) = fo(x)

Discretization

X, X2‘X3‘X4‘X5‘X6‘

xi=(—1h, i=12...,N

where N is the total number of nodes and h is given by
h=_r/N-1.

Finite difference method

U ~, YUir1—Ui
ox ~ 2h

U~ Ui—1—2Uj+Ujt
ox2 h2

Note that a second-order central difference scheme is
applied. More details [3, 2].

Discretization in space and time

| |
fiz1 m —
[m n
tl—l u u
| |
t
T—»X
X1 Xe
0

X3

Xy

X5

X6

Serial implementation

Time measurement and system information

std:

std:

std:

std:

:uint64_t t

= hpx::util::high_resolution_clock::now();

:uint64_t elapsed

= hpx::util::high_resolution_clock::now() - t;

:uint64_t os_thread_count

= hpx::get_os_thread_count ();

:cout << "Computation took " << elapsed

<< " on " << os_thread_count << " threads"
<< std::endl;

Discretization scheme

Approximation of the heat equation

static double heat (double left,
double middle,
double right)

return middle +
(alphax*dt/(h*h)) * (left - 2*middle + right);

Swapping the data

U] = n m m m m n n
U[1] n n m m n n
U[O] u u u u | |

X1 X2 X3 X4 X5 Xe¢ X7 Xg Xy

space do_work(std::size_t nx, std::size_t nt)

{

std::vector<space> U(2);
(space& s : U)
s.resize(nx);

Ulnt % 21;

Do the actual work

(std::size_t t = 0; t != nt; ++t)

space & current = U[t % 2];
space& next = U[(t + 1) % 2];

next [0] =
heat (current [nx-1], current[0], current[1]);

(std::size_t i = 1; i !'= nx-1; ++1i)
next [i] =
heat (current [i-1], current[i], current[i+1]);

next [nx-1] =
heat (current [nx-2], current[nx-1], current[0]);

Initial conditions

u(x,0) = £(i,0), with £(0,/) = ifori=1,2,...,N

(D

Solution

heat transfer coefficient k = 0.5
time step size dt = 1.;

grid spacing h = 1.;

time steps nt = 45;

Summary

Summary

One-dimensional heat equation
Serial implementation

References

References |

The one-dimensional heat equation.

Finite difference methods for ordinary and partial
differential equations: steady-state and
time-dependent problems, volume 98.

Finite difference schemes and partial differential
equations, volume 88.

	Reminder
	Heat equation
	Serial implementation
	Summary
	References

