
Math 4997-3
Lecture 12: One-dimensional heat equation

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


Reminder

Heat equation

Serial implementation

Summary

References



Reminder



Lecture 12

What you should know from last lecture
I What is HPX
I Asynchronous programming using HPX
I Shared memory parallelism using HPX



Heat equation



Heat equation

Statement of the heat equation
∂u
∂t = α

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
where alpha is the diffusivity of the material.

Compact form

u̇ = α∇u

The heat equation computes the flow of heat in a
homogeneous and isotropic medium.

More details [1].



Easiest case

1D heat equation
∂u
∂t = α∂2u

∂x2 , 0 ≤ x ≤ L, t > 0

Boundary conditions
The solution of the heat equation requires boundary
conditions
I u(0, t) = u0

I u(L, t) = uL

I u(x, 0) = f0(x)



Discretization

0 L
x1 x2 x3 x4 x5 x6

h

Discrete mesh
xi = (i − 1)h, i = 1, 2, . . . , N

where N is the total number of nodes and h is given by
h = L/N − 1.



Finite difference method

Approximation of the first derivative
∂u
∂x ≈ ui+1−ui

2h

Approximation of the second derivative
∂u
∂x2 ≈ ui−1−2ui+ui+1

h2

Note that a second-order central difference scheme is
applied. More details [3, 2].



Discretization in space and time

x1 x2 x3 x4 x5 x6
x

t

ti−1

ti

ti+1

0 L



Serial implementation



Time measurement and system information
Time measurement
std::uint64_t t

= hpx::util::high_resolution_clock::now();
// Do work
std::uint64_t elapsed

= hpx::util::high_resolution_clock::now() - t;

Accessing system information
std::uint64_t const os_thread_count

= hpx::get_os_thread_count();

std::cout << "Computation took " << elapsed
<< " on " << os_thread_count << " threads"
<< std::endl;



Discretization scheme

x1 x2 x3 x4 x5 x6

t1

t0

0 L

Approximation of the heat equation
static double heat(double left,

double middle,
double right)

{
return middle +

(alpha*dt/(h*h)) * (left - 2*middle + right);
}



Swapping the data

x1 x2 x3 x4 x5 x6 x7 x8 x9
U[0]
U[1]
U[0]

t=0
t=1
t=2

Swapping function
space do_work(std::size_t nx, std::size_t nt)
{

// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s : U)

s.resize(nx);

// Return the solution at time-step 'nt'.
return U[nt % 2];

}



Do the actual work

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{

space const& current = U[t % 2];
space& next = U[(t + 1) % 2];

next[0] =
heat(current[nx-1], current[0], current[1]);

for (std::size_t i = 1; i != nx-1; ++i)
next[i] =

heat(current[i-1], current[i], current[i+1]);

next[nx-1] =
heat(current[nx-2], current[nx-1], current[0]);

}



Initial conditions

u(x, 0) = f(i, 0), with f(0, i) = i for i = 1, 2, . . . , N

2 1 0 1 2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0

20

40

60

80

u



Solution

2 1 0 1 2

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

20

30

40

50

60

70

80

u

Parameters
I heat transfer coefficient k = 0.5
I time step size dt = 1.;
I grid spacing h = 1.;
I time steps nt = 45;



Summary



Summary

After this lecture, you should know
I One-dimensional heat equation
I Serial implementation



References



References I
[1] John Rozier Cannon.

The one-dimensional heat equation.
Number 23. Cambridge University Press, 1984.

[2] Randall J LeVeque.
Finite difference methods for ordinary and partial
differential equations: steady-state and
time-dependent problems, volume 98.
Siam, 2007.

[3] John C Strikwerda.
Finite difference schemes and partial differential
equations, volume 88.
Siam, 2004.


	Reminder
	Heat equation
	Serial implementation
	Summary
	References

