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Heat equation

Heat equation

Statement of the heat equation
∂u
∂t = α

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
where alpha is the diffusivity of the material.

Compact form

u̇ = α∇u

The heat equation computes the flow of heat in a homogeneous
and isotropic medium.

More details [1].

Easiest case

1D heat equation
∂u
∂t = α∂2u

∂x2 , 0 ≤ x ≤ L, t > 0

Boundary conditions
The solution of the heat equation requires boundary conditions
I u(0, t) = u0

I u(L, t) = uL
I u(x , 0) = f0(x)

Discretization

0 L
x1 x2 x3 x4 x5 x6

h

Discrete mesh

xi = (i − 1)h, i = 1, 2, . . . , N

where N is the total number of nodes and h is given by h = L/N − 1.
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Finite difference method

Approximation of the first derivative
∂u
∂x ≈ ui+1−ui

2h

Approximation of the second derivative
∂u
∂x2 ≈ ui−1−2ui +ui+1

h2

Note that a second-order central difference scheme is applied.
More details [3, 2].

Discretization in space and time

x1 x2 x3 x4 x5 x6
x

t

ti−1

ti

ti+1

0 L

Serial implementation

Time measurement and system information

Time measurement
std::uint64_t t

= hpx::util::high_resolution_clock::now();
// Do work
std::uint64_t elapsed

= hpx::util::high_resolution_clock::now() - t;

Accessing system information
std::uint64_t const os_thread_count

= hpx::get_os_thread_count();

std::cout << "Computation took " << elapsed
<< " on " << os_thread_count << " threads"
<< std::endl;
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Discretization scheme

x1 x2 x3 x4 x5 x6

t1

t0

0 L

Approximation of the heat equation
static double heat(double left,

double middle,
double right)

{
return middle +

(alpha*dt/(h*h)) * (left - 2*middle + right);
}

Swapping the data

x1 x2 x3 x4 x5 x6 x7 x8 x9
U[0]

U[1]

U[0]

t=0

t=1

t=2

Swapping function
space do_work(std::size_t nx, std::size_t nt)
{

// U[t][i] is the state of position i at time t.
std::vector<space> U(2);
for (space& s : U)

s.resize(nx);

// Return the solution at time-step 'nt'.
return U[nt % 2];

}

Do the actual work

// Actual time step loop
for (std::size_t t = 0; t != nt; ++t)
{

space const& current = U[t % 2];
space& next = U[(t + 1) % 2];

next[0] =
heat(current[nx-1], current[0], current[1]);

for (std::size_t i = 1; i != nx-1; ++i)
next[i] =

heat(current[i-1], current[i], current[i+1]);

next[nx-1] =
heat(current[nx-2], current[nx-1], current[0]);

}

Initial conditions

u(x , 0) = f (i , 0), with f (0, i) = i for i = 1, 2, . . . , N
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Solution
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Parameters
I heat transfer coefficient k = 0.5
I time step size dt = 1.;
I grid spacing h = 1.;
I time steps nt = 45;
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After this lecture, you should know
I One-dimensional heat equation
I Serial implementation

References

Notes

Notes

Notes

Notes



References I
[1] John Rozier Cannon.

The one-dimensional heat equation.
Number 23. Cambridge University Press, 1984.

[2] Randall J LeVeque.
Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems,
volume 98.
Siam, 2007.

[3] John C Strikwerda.
Finite difference schemes and partial differential equations,
volume 88.
Siam, 2004.

Notes

Notes

Notes

Notes


	Reminder
	Heat equation
	Serial implementation
	Summary
	References

