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Reminder



Lecture 9

What you should know from last lecture
I Vectors and matrices
I How to use Blaze for matrix and vector operations
I How to compile a program using a external library



Solving linear equation systems



Illustration of the linear system
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Conjugate gradient method



Conjugate gradient method

Properties:
I Most popular iterative method for solving large

systems of linear equations
I Developed by Hestenes and Stiefel in 1952 [3]
I Solves linear equation systems Ax = b

I Each iteration does one matrix-vector multiplication
and some computation of inner products

Matrix
I Symmetry AT = A

I Positive-definite xTAx > 0, ∀x > 0

More details about iterative methods [2].



The quadratic form

Let us define the problem as a matrix:

Ax = b

with

A =
(

3 2
2 6

)
, x =

(
x1
x2

)
, and b =

(
2

−8

)
.

Instead of solving Ax = b, the quadratic form, which is a
function of x can be

f(x) = 1
2x

TAx − bTx + c

can be minimized to find the solution x.



Plot of the quadratic form f(x)
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Finding the minimal point of x corresponds to the solution
of Ax = b.



Contour plot of the quadratic form f(x)
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Gradient of the quadratic form
Definition of the gradient:

f ′(x) =


∂

∂x1
f(x)

∂
∂x2

f(x)
...

∂
∂xn

f(x)


Applying a little bit of maths:

f ′(x) = 1
2A

Tx + 1
2Ax − b

and for a symmetric matrix A, we get

f ′(x) = Ax − b



Gradient field
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Since the gradient at the solution x is zero, we can set
f ′(x) to zero to minimize f(x).



The method of the steepest decent

I We chose an random point x0

I and slide down to the bottom of the quadratic form
f(x)

I by taking a series of steps x1, x2, . . .

I Each step we go to the direction which f decreases
most which is the opposite of f ′(xi) which is

−f ′(xi) = b − Axi



The method of the steepest decent

Error
ei = xi − x

Defines how far way we are from the exact solution at
iteration i.

Residual
ri = b − Axi = −f ′(xi)

Defines how far away we are from the correct value for b
in iteration i.



Visualization of the residual and error
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How far to go along the residual vector?



Line search

I We look at a starting point x0 = [−2, −2]T

I from this point, we go along the direction of the
steepest decent

x1 = x0 + αr0

How large to chose α?



Two surfaces
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We need to find the point on the intersection of the two
surfaces which minimizes f .



Parabola by the intersection of the two
surfaces
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The minimum of this function is as d
dα

f(x0 + αr0) = 0.



How to determine α?
Applying the chain rule: d

dα
f(x0 + αr0) = f ′(x0 + αr0)Tr0.

This expression is zero, if the two vectors are orthogonal.

rT
1 r0 = 0

( − Ax1)Tr0 = 0
( − A(x0 + αr0))Tr0 = 0

(b − Ax0)Tr0 − α(Ar0)Tr0 = 0
(b − Ax0)Tr0 = α(Ar0)Tr0

rT
0 r0 = αrT

0 (Ar0)

α = rT
0 r0

rT
0Ar0



Visualization of gradient of the previous step
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The gradient at x1 is orthogonal to x0.



Algorithm

1. r0 = b − Ax0

2. If |r0| < ε return x0

3. ri = b − Axi

4. αi = rT0 r0
rT0Ar0

5. xi+1 = xiαiri

6. If |ri| < ε return xi

7. Go to (3)



Visualization of the line search
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The solution after five steps x5 = [1.93832964, −2.]T .



Blaze Iterative



About BlazeIterative1

This is a set of iterative linear system solvers intended for
use with the Blaze library, a high-performance C++ linear
algebra library. The API is currently based on a
tag-dispatch system to choose a particular algorithm.
Usage
#Install
tar -xvf blaze_iterative.gz
cd blaze_iterative
cp -r ./blaze_iterative /home/patrick/

#Compile
g++ -I/home/diehlpk/blaze

-I/home/patrick/blaze_iterative BlazeTest.cpp

1https://github.com/STEllAR-GROUP/BlazeIterative

https://github.com/STEllAR-GROUP/BlazeIterative


Conjugate gradient example

#include "BlazeIterative.hpp"

using namespace blaze;
using namespace blaze::iterative;

std::size_t N = 10;
DynamicMatrix <double ,false > A(N,N, 0.0);
DynamicVector <double > b(N, 0.0);
DynamicVector <double > x1(N, 0.);

//Initialize the matrix

// Solve the system
ConjugateGradientTag tag;
auto x2 = solve(A,b,tag);



Available algorithms

Solvers
I Conjugate Gradient
I Preconditioned CG
I BiCGSTAB
I Generalized minimal residual method (GMRES),

Eigenvalues
I Lanczos

More details about solvers [1].



Summary



Summary

After this lecture, you should know
I Linear equation systems
I Conjugate gradient method
I BlazeIterative
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