Math 4997-3

Lecture 9: Solvers, Conjugate gradient method, and **BlazeIterative**

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives 4.0 International" license.

Reminder

Solving linear equation systems

Conjugate gradient method The method of the steepest decent

Blaze Iterative

Summary

References

Reminder

Lecture9

Notes

[What you shou](#page-7-0)l[d know from last lecture](https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/)

 \blacktriangleright Vectors and matrices

 \blacktriangleright How to use Blaze for matrix and vector operations

 \blacktriangleright [How](#page-7-0) to compile a program using a external library

Notes

Notes

Solving linear equation systems

Illustration of the linear system

Conjugate gradient method

Conjugate gradient method

Properties:

- \blacktriangleright Most po[pular iterative method for solving large systems of](#page-0-0) linear equations
- ▶ Developed by Hestenes and Stiefel in 1952 [3]
- \triangleright Solves linear equation systems $Ax = b$
- \blacktriangleright Each iteration does one matrix-vector multiplication and some computation of inner products

Matrix

- \blacktriangleright Symmetry $A^T = A$
- ▶ Positive-definite $\mathbf{x}^T A \mathbf{x} > 0$, $\forall \mathbf{x} > 0$

More details about iterative methods [2].

Notes

Notes

The quadratic form

Let us define the problem as a matrix:

 $Ax = b$

with

$$
\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}
$$

.

Instead of solving $Ax = b$, the quadratic form, which is a function of **x** can be

$$
f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - b^T \mathbf{x} + c
$$

can be minimized to find the solution **x**.

Plot of the quadratic form $f(\mathbf{x})$

Finding the minimal point of **x** corresponds to the solution of $Ax = b$.

Contour plot of the quadratic form $f(\mathbf{x})$

Gradient of the quadratic form

Definition of the gradient:

$$
f'(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}) \\ \frac{\partial}{\partial x_2} f(\mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_n} f(\mathbf{x}) \end{pmatrix}
$$

Applying a little bit of maths:

$$
f'(\mathbf{x}) = \tfrac{1}{2}\mathbf{A}^T\mathbf{x} + \tfrac{1}{2}\mathbf{A}\mathbf{x} - \mathbf{b}
$$

and for a symmetric matrix **A**, we get

$$
f'(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}
$$

Notes

Notes

Notes

Since the gradient at the solution **x** is zero, we can set $f'(\mathbf{x})$ to zero to minimize $f(\mathbf{x})$.

The method of the steepest decent

- \triangleright We chose an random point \mathbf{x}_0
- **If** and slide down to the bottom of the quadratic form $f(\mathbf{x})$
- \blacktriangleright by taking a series of steps $\mathbf{x}_1, \mathbf{x}_2, \ldots$
- \blacktriangleright Each step we go to the direction which f decreases most which is the opposite of $f'(\mathbf{x}_i)$ which is

$$
-f'(\mathbf{x}_i) = \mathbf{b} - \mathbf{A}\mathbf{x}_i
$$

The method of the steepest decent

Error

 $\mathbf{e}_i = \mathbf{x}_i - \mathbf{x}$

Defines how far way we are from the exact solution at iteration i.

Residual

$$
\mathbf{r}_i = \mathbf{b} - \mathbf{A}\mathbf{x}_i = -f'(\mathbf{x}_i)
$$

Defines how far away we are from the correct value for **b** in iteration i.

Visualization of the residual and error

Notes

Notes

Notes

- \triangleright We look at a starting point $\mathbf{x}_0 = [-2, -2]^T$
- \blacktriangleright from this point, we go along the direction of the steepest decent

$$
\textbf{x}_1 = \textbf{x}_0 + \alpha \textbf{r}_0
$$

How large to chose *α*?

Two surfaces

We need to find the point on the intersection of the two surfaces which minimizes f.

Parabola by the intersection of the two surfaces

The minimum of this function is as $\frac{d}{d\alpha} f(\mathbf{x}_0 + \alpha \mathbf{r}_0) = 0$.

How to determine *α*?

Applying the chain rule: $\frac{d}{d\alpha} f(\mathbf{x}_0 + \alpha \mathbf{r}_0) = f'(\mathbf{x}_0 + \alpha \mathbf{r}_0)^T \mathbf{r}_0$. This expression is zero, if the two vectors are orthogonal.

$$
\mathbf{r}_1^T \mathbf{r}_0 = 0
$$

$$
(-\mathbf{A}\mathbf{x}_1)^T \mathbf{r}_0 = 0
$$

$$
(-\mathbf{A}(\mathbf{x}_0 + \alpha \mathbf{r}_0))^T \mathbf{r}_0 = 0
$$

$$
(\mathbf{b} - \mathbf{A}\mathbf{x}_0)^T \mathbf{r}_0 - \alpha (\mathbf{A}\mathbf{r}_0)^T \mathbf{r}_0 = 0
$$

$$
(\mathbf{b} - \mathbf{A}\mathbf{x}_0)^T \mathbf{r}_0 = \alpha (\mathbf{A}\mathbf{r}_0)^T \mathbf{r}_0
$$

$$
\mathbf{r}_0^T \mathbf{r}_0 = \alpha \mathbf{r}_0^T (\mathbf{A}\mathbf{r}_0)
$$

$$
\alpha = \frac{\mathbf{r}_0^T \mathbf{r}_0}{\mathbf{r}_0^T \mathbf{A}\mathbf{r}_0}
$$

Visualization of gradient of the previous step

The gradient at \mathbf{x}_1 is orthogonal to \mathbf{x}_0 .

Algorithm

Visualization of the line search

The solution after five steps $\mathbf{x}_5 = [1.93832964, -2.]^T$.

Blaze Iterative

Notes

Notes

Notes

About BlazeIterative¹

This is a set of iterative linear system solvers intended for use with the Blaze library, a high-performance $C++$ linear algebra library. The API is currently based on a tag-dispatch system to choose a particular algorithm.

Usage

#Install

```
tar -xvf blaze_iterative .gz
cd blaze_iterative
cp -r ./ blaze_iterative /home/patrick/
```
#Compile

g++ -I/home/diehlpk/blaze -I/home/patrick/ blaze_iterative BlazeTest .cpp

1 https://github.com/STEllAR-GROUP/BlazeIterative

Conjugate gradient example

Notes

#include " BlazeIterative .hpp"

using namespace blaze; using namespace blaze :: iterative ;

 $\mathtt{std}::\mathtt{size}_\mathtt{t} \ \mathtt{N} \ = \ 10 \,;$ DynamicMatrix<double,false> A(N,N, 0.0); DynamicVector <double > b(N, 0.0); DynamicVector <double > x1(N, 0.);

//Initialize the matrix

// Solve the system ConjugateGradientTag tag; auto $x2 = solve(A, b, tag);$

Available algorithms

Solvers

- ▶ Conjugate Gradient
- **Preconditioned CG**
- \blacktriangleright BiCGSTAB
- \triangleright Generalized minimal residual method (GMRES),

Eigenvalues

 \blacktriangleright Lanczos

More details about solvers [1].

Notes

Notes

Summary

Notes

After this lecture, you should know

- \blacktriangleright Linear equation systems
- \blacktriangleright Conjugate gradient method
- \blacktriangleright BlazeIterative

Acknowledgment

Notes

Notes

 \blacktriangleright The very nice example for the introduction of the conjugate gradient method was adapted from:

Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the agonizing pain." (1994) .

References

References I

- [1] Richard Barrett, Michael W Berry, Tony F Chan, James Demmel, June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst. Templates for the solution of linear systems: building blocks for iterative methods, volume 43. Siam, 1994.
- [2] William L Briggs, Steve F McCormick, et al. A multigrid tutorial, volume 72. Siam, 2000.
- [3] Magnus Rudolph Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems, volume 49. NBS Washington, DC, 1952.