Math 4997-3

Lecture 9: Solvers, Conjugate gradient method, and Blazelterative

Patrick Diehl	
ratific Dielii	
https://www.cct.lsu.edu/-pdiehl/teaching/2021/4997/	
This work is licensed under a Creative Commons "Attribution-NonCommercial-NoDerivatives 4.0 International" license.	
	Notes
	Notes
Reminder	
Calaina linear ann aire an ann an	
Solving linear equation systems	
Conjugate gradient method	
The method of the steepest decent	
Blaze Iterative	
Summary	
Summary	
References	
	Notes
Devicedor	Notes
Reminder	Notes
Reminder Lecture 9	Notes
Lecture 9	
Lecture 9 What you should know from last lecture	
Lecture 9 What you should know from last lecture ▶ Vectors and matrices	
Lecture 9 What you should know from last lecture ▶ Vectors and matrices ▶ How to use Blaze for matrix and vector operations	

Notes

Notes Solving linear equation systems Illustration of the linear system Notes $3x_1 + 2x_2 = 2$ x_1 -2 $2x_1 + 6x_2 = -8$ Notes Conjugate gradient method Conjugate gradient method Properties: ightharpoonup Solves linear equation systems $\mathbf{A}\mathbf{x} = \mathbf{b}$

- ▶ Most popular iterative method for solving large systems of linear equations
- ▶ Developed by Hestenes and Stiefel in 1952 [3]
- ▶ Each iteration does one matrix-vector multiplication and some computation of inner products

Matrix

- ightharpoonup Symmetry $\mathbf{A}^T = \mathbf{A}$
- Positive-definite $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0, \forall \mathbf{x} > 0$

More details about iterative methods [2].

Notes			

The quadratic form

Let us define the problem as a matrix:

 $\mathbf{A}\mathbf{x} = \mathbf{b}$

Notes

with

$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ 2 & 6 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}, \text{ and } \mathbf{b} = \begin{pmatrix} 2 \\ -8 \end{pmatrix}.$$

Instead of solving $\mathbf{A}\mathbf{x}=\mathbf{b}$, the quadratic form, which is a function of \mathbf{x} can be

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T A \mathbf{x} - b^T \mathbf{x} + c$$

can be minimized to find the solution \mathbf{x} .

Plot of the quadratic form $f(\mathbf{x})$

Finding the minimal point of ${\bf x}$ corresponds to the solution of ${\bf A}{\bf x}={\bf b}.$

Contour plot of the quadratic form $f(\mathbf{x})$

Gradient of the quadratic form

Definition of the gradient:

$$f'(\mathbf{x}) = \begin{pmatrix} \frac{\partial}{\partial x_1} f(\mathbf{x}) \\ \frac{\partial}{\partial x_2} f(\mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_n} f(\mathbf{x}) \end{pmatrix}$$

Applying a little bit of maths:

$$f'(\mathbf{x}) = \frac{1}{2}\mathbf{A}^T\mathbf{x} + \frac{1}{2}\mathbf{A}\mathbf{x} - \mathbf{b}$$

and for a symmetric matrix \boldsymbol{A} , we get

$$f'(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{b}$$

Notes		
Notes		
Notes		
Notes		

Gradient field

Since the gradient at the solution \mathbf{x} is zero, we can set $f'(\mathbf{x})$ to zero to minimize $f(\mathbf{x})$.

The method of the steepest decent

- ightharpoonup We chose an random point \mathbf{x}_0
- ightharpoonup and slide down to the bottom of the quadratic form $f(\mathbf{x})$
- \blacktriangleright by taking a series of steps $\mathbf{x}_1, \mathbf{x}_2, \dots$
- ▶ Each step we go to the direction which f decreases most which is the opposite of $f'(\mathbf{x}_i)$ which is

$$-f'(\mathbf{x}_i) = \mathbf{b} - \mathbf{A}\mathbf{x}_i$$

The method of the steepest decent

Error

$$\mathbf{e}_i = \mathbf{x}_i - \mathbf{x}$$

Defines how far way we are from the exact solution at iteration i.

Residual

$$\mathbf{r}_i = \mathbf{b} - \mathbf{A}\mathbf{x}_i = -f'(\mathbf{x}_i)$$

Defines how far away we are from the correct value for ${\bf b}$ in iteration i.

Visualization of the residual and error

How far to go along the residual vector?

Notes

Notes			

Line search

- ▶ We look at a starting point $\mathbf{x}_0 = [-2, -2]^T$
- ► from this point, we go along the direction of the steepest

$$\mathbf{x}_1 = \mathbf{x}_0 + \alpha \mathbf{r}_0$$

Notes

How large to chose α ?

Two surfaces

We need to find the point on the intersection of the two surfaces which minimizes f.

Parabola by the intersection of the two surfaces

The minimum of this function is as $\frac{d}{d\alpha}f(\mathbf{x}_0 + \alpha \mathbf{r}_0) = 0$.

How to determine α ?

Applying the chain rule: $\frac{d}{d\alpha}f(\mathbf{x}_0 + \alpha\mathbf{r}_0) = f'(\mathbf{x}_0 + \alpha\mathbf{r}_0)^T\mathbf{r}_0$. This expression is zero, if the two vectors are orthogonal.

$$\begin{split} \textbf{r}_1^T \textbf{r}_0 &= 0 \\ (-\textbf{A}\textbf{x}_1)^T \textbf{r}_0 &= 0 \\ (-\textbf{A}(\textbf{x}_0 + \alpha \textbf{r}_0))^T \textbf{r}_0 &= 0 \\ (\textbf{b} - \textbf{A}\textbf{x}_0)^T \textbf{r}_0 - \alpha (\textbf{A}\textbf{r}_0)^T \textbf{r}_0 &= 0 \\ (\textbf{b} - \textbf{A}\textbf{x}_0)^T \textbf{r}_0 &= \alpha (\textbf{A}\textbf{r}_0)^T \textbf{r}_0 \\ \textbf{r}_0^T \textbf{r}_0 &= \alpha \textbf{r}_0^T (\textbf{A}\textbf{r}_0) \\ \alpha &= \frac{\textbf{r}_0^T \textbf{r}_0}{\textbf{r}_0^T \textbf{A}\textbf{r}_0} \end{split}$$

Notes		
Notes		
Notes		

Visualization of gradient of the previous step

The gradient at \mathbf{x}_1 is orthogonal to \mathbf{x}_0 .

Algorithm

- $\mathbf{1.}\ \mathbf{r}_0 = \mathbf{b} \mathbf{A}\mathbf{x}_0$
- 2. If $|\mathbf{r}_0| < \epsilon$ return \mathbf{x}_0
- 3. $\mathbf{r}_i = \mathbf{b} \mathbf{A}\mathbf{x}_i$
- 4. $\alpha_i = \frac{\mathbf{r}_0^T \mathbf{r}_0}{\mathbf{r}_0^T \mathbf{A} \mathbf{r}_0}$ 5. $\mathbf{x}_{i+1} = \mathbf{x}_i \alpha_i \mathbf{r}_i$
- 6. If $|\mathbf{r}_i| < \epsilon$ return \mathbf{x}_i
- 7. Go to (3)

Visualization of the line search

The solution after five steps $\mathbf{x}_5 = [1.93832964, -2.]^T$.

Blaze Iterative

Notes			
Notes			
Notes			
Notes			
Notes			

About Blazelterative¹

This is a set of iterative linear system solvers intended for use with the Blaze library, a high-performance C++ linear algebra library. The API is currently based on a tag-dispatch system to choose a particular algorithm.

Usage

Conjugate gradient example

```
#include "BlazeIterative.hpp"
using namespace blaze;
using namespace blaze::iterative;
std::size_t N = 10;
DynamicMatrix double, false > A(N,N, 0.0);
DynamicVector < double > b(N, 0.0);
DynamicVector < double > x1(N, 0.);

//Initialize the matrix

// Solve the system
ConjugateGradientTag tag;
auto x2 = solve(A,b,tag);
```

Available algorithms

Solvers

- ► Conjugate Gradient
- ▶ Preconditioned CG
- ► BiCGSTAB
- ► Generalized minimal residual method (GMRES),

Eigenvalues

Lanczos

More details about solvers [1].

Summary

Notes			
Notes			
Notes			

¹ https://github.com/STEllAR-GROUP/BlazeIterative

Summary	Notes
After this lecture, you should know	
► Linear equation systems	
 Conjugate gradient method Blazelterative 	
Diazetterative	
Acknowledgment	Notes
Acknowledgment	Notes
The very nice example for the introduction of the conjugate gradient method was adapted from:	
Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient method without the agonizing pain."	
(1994).	
	Notes
References	
References I	Notes
[1] Richard Barrett, Michael W Berry, Tony F Chan, James	
Demmel, June Donato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and Henk Van der Vorst.	
Templates for the solution of linear systems: building blocks for iterative methods, volume 43.	
Siam, 1994.	
[2] William L Briggs, Steve F McCormick, et al. A multigrid tutorial, volume 72.	
Siam, 2000. [3] Magnus Rudolph Hestenes and Eduard Stiefel.	
Methods of conjugate gradients for solving linear systems, volume 49.	
NBS Washington, DC, 1952.	