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Lecture 9

What you should know from last lecture
I Vectors and matrices
I How to use Blaze for matrix and vector operations
I How to compile a program using a external library
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Solving linear equation systems

Illustration of the linear system
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Conjugate gradient method

Conjugate gradient method

Properties:
I Most popular iterative method for solving large systems of

linear equations
I Developed by Hestenes and Stiefel in 1952 [3]
I Solves linear equation systems Ax = b

I Each iteration does one matrix-vector multiplication and some
computation of inner products

Matrix
I Symmetry AT = A

I Positive-definite xTAx > 0, ∀x > 0

More details about iterative methods [2].
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The quadratic form

Let us define the problem as a matrix:

Ax = b

with

A =
(

3 2
2 6

)
, x =

(
x1
x2

)
, and b =

(
2

−8

)
.

Instead of solving Ax = b, the quadratic form, which is a function
of x can be

f (x) = 1
2x

T Ax − bTx + c

can be minimized to find the solution x.

Plot of the quadratic form f (x)
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Finding the minimal point of x corresponds to the solution of
Ax = b.

Contour plot of the quadratic form f (x)
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Gradient of the quadratic form

Definition of the gradient:

f ′(x) =


∂

∂x1
f (x)

∂
∂x2

f (x)
...

∂
∂xn

f (x)


Applying a little bit of maths:

f ′(x) = 1
2A

Tx + 1
2Ax − b

and for a symmetric matrix A, we get

f ′(x) = Ax − b
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Gradient field
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Since the gradient at the solution x is zero, we can set f ′(x) to
zero to minimize f (x).

The method of the steepest decent

I We chose an random point x0

I and slide down to the bottom of the quadratic form f (x)
I by taking a series of steps x1, x2, . . .

I Each step we go to the direction which f decreases most
which is the opposite of f ′(xi) which is

−f ′(xi) = b − Axi

The method of the steepest decent

Error

ei = xi − x

Defines how far way we are from the exact solution at iteration i .

Residual

ri = b − Axi = −f ′(xi)

Defines how far away we are from the correct value for b in
iteration i .

Visualization of the residual and error
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How far to go along the residual vector?
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Line search

I We look at a starting point x0 = [−2, −2]T

I from this point, we go along the direction of the steepest
decent

x1 = x0 + αr0

How large to chose α?

Two surfaces
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We need to find the point on the intersection of the two surfaces
which minimizes f .

Parabola by the intersection of the two surfaces
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The minimum of this function is as d
dα f (x0 + αr0) = 0.

How to determine α?

Applying the chain rule: d
dα f (x0 + αr0) = f ′(x0 + αr0)T r0. This

expression is zero, if the two vectors are orthogonal.

rT1 r0 = 0
( − Ax1)T r0 = 0

( − A(x0 + αr0))T r0 = 0
(b − Ax0)T r0 − α(Ar0)T r0 = 0

(b − Ax0)T r0 = α(Ar0)T r0

rT0 r0 = αrT0 (Ar0)

α = rT0 r0
rT0 Ar0
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Visualization of gradient of the previous step

−4 −2 0 2 4 6
−6

−4

−2

0

2

4

xx0

x1

x1

x 2

The gradient at x1 is orthogonal to x0.

Algorithm

1. r0 = b − Ax0

2. If |r0| < ε return x0

3. ri = b − Axi

4. αi = rT0 r0
rT0 Ar0

5. xi+1 = xiαiri

6. If |ri | < ε return xi

7. Go to (3)

Visualization of the line search
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The solution after five steps x5 = [1.93832964, −2.]T .

Blaze Iterative
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About BlazeIterative1

This is a set of iterative linear system solvers intended for use with
the Blaze library, a high-performance C++ linear algebra library.
The API is currently based on a tag-dispatch system to choose a
particular algorithm.

Usage
#Install
tar -xvf blaze_iterative.gz
cd blaze_iterative
cp -r ./blaze_iterative /home/patrick/

#Compile
g++ -I/home/diehlpk/blaze

-I/home/patrick/blaze_iterative BlazeTest.cpp

1
https://github.com/STEllAR-GROUP/BlazeIterative

Conjugate gradient example

#include "BlazeIterative.hpp"

using namespace blaze;
using namespace blaze::iterative;

std::size_t N = 10;
DynamicMatrix <double ,false > A(N,N, 0.0);
DynamicVector <double > b(N, 0.0);
DynamicVector <double > x1(N, 0.);

//Initialize the matrix

// Solve the system
ConjugateGradientTag tag;
auto x2 = solve(A,b,tag);

Available algorithms

Solvers
I Conjugate Gradient
I Preconditioned CG
I BiCGSTAB
I Generalized minimal residual method (GMRES),

Eigenvalues
I Lanczos

More details about solvers [1].
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Summary

After this lecture, you should know
I Linear equation systems
I Conjugate gradient method
I BlazeIterative
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