
Math 4997-3
Lecture 1: Introduction and Getting started

Patrick Diehl

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/

This work is licensed under a Creative Commons “Attribution-NonCommercial-
NoDerivatives 4.0 International” license.

https://orcid.org/0000-0003-3922-8419
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Outline

Administration/Organization

Getting started

Looping and counting

Working with strings

Summary

References

Administration/Organization

Important dates

Lectures
Tuesday and Thursday, 09:00 to 10:20, 0128 Allen Hall

Grading
I Homework 30%
I Project 20%
I Midterm exam 20%
I Final exam 30%

Exams
I Midterm exam: 13.10 during lecture
I Final exams: 10.12 from 12:30 to 2:30

More: Syllabus and Timeline.

https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/syllabus.pdf
https://www.cct.lsu.edu/~pdiehl/teaching/2021/4997/timeline.pdf

Reading

Course’s books
I Andrew, Koenig. Accelerated C++: practical

programming by example. Pearson Education India,
2000.

I Stroustrup, Bjarne. Programming: principles and
practice using C++. Pearson Education, 2014.

Assistance C++ basics
I Stroustrup, Bjarne. A Tour of C++. Addison-Wesley

Professional, 2018.
I O’Dwyer, Arthur. Mastering the C++17 STL. Packt

Publishing Ltd; 2017.

Submitting home work

Theory exercises
At the beginning of the lecture in printed form

Programming exercises
I Github Classroom1 for submission of the

programming exercises and the course project.
I Juypter Server2 to work in your browser on the

exercises and course project3.

Note that we use these tools the first time for this course.
We anticipate to do a short survey at the end of the
semester.

1https://www.diehlpk.de/blog/githubclassroom/
2https://hpx-tutorial.cct.lsu.edu
3https://www.diehlpk.de/blog/jupyter-notebooks/

https://www.diehlpk.de/blog/githubclassroom/
https://hpx-tutorial.cct.lsu.edu
https://www.diehlpk.de/blog/jupyter-notebooks/

Communication-Intensive (C-I) course

Mode I: Written
I Learn how to write C++ standard confirm code
I Learn how to write proper documentation
I Use the pieces of the assignments to code the

course project

Mode II: Technological
I Use GitHub for remote collaborative software

development
I Translate mathematical and algorithms into C++ code

Getting started

A small C++ program
// a small C++ program
#include <iostream>

int main()
{

std::cout << "Hello, world!" << std::endl;
return 0;

}

Compile
g++ lecture1 -1.cpp -o lecture1 -1

Run
./lecture1 -1

Structure of a C++ program
// a small C++ program
#include <iostream>

int main()
{

std::cout << "Hello, world!" << std::endl;
return 0;

}

Comments [?]
I A one line comment starts with //
I A comment over multiple lines starts with /∗ and

ends with ∗/
I Comments are important to understand the program,

especially if the code is shared

Structure of a C++ program

// a small C++ program
#include <iostream>

int main()
{

std::cout << "Hello, world!" << std::endl;
return 0;

}

Include directives
I Is needed to include functionality of the C++ standard

library, e.g. IO, which is not part of the core language
I To include functionality of external libraries or

structure your own code

Structure of a C++ program
// a small C++ program
#include <iostream>

int main()
{

std::cout << "Hello, world!" << std::endl;
return 0;

}

Main function
I Every C++ program needs a function called main

returning an integer value
I Return zero means success and any other value

indicates failure
I When we execute any C++ program the main

function is invoked and all instructions are executed

Structure of a C++ program

// a small C++ program
#include <iostream>

int main()
{

std::cout << "Hello, world!" << std::endl;
return 0;

}

return statement
I The value of the return statement is passed to the

program, which called the function
I One function can have multiple return statements

Built-in types4

Integer types
I bool Representation of truth values: true or false
I unsigned Integral type for non-negative values only
I short Integral type that must hold at least 32 bits
I long Integral type that must hold at least 64 bits
I size_t Unsigned Integral type

Floating points
I float Single precision floating point type
I double Double precision floating point type
I long double Extended precision floating point type

4https://en.cppreference.com/w/cpp/language/types

https://en.cppreference.com/w/cpp/language/types

Looping and counting

Using loops and counting

Compute the sum of 1, . . . , n

result =
n∑

i=1

i

Using the loop statement5

size_t result = 0;
for(size_t i = 1; i != 5; i++){

result = result + i;
}

5https://en.cppreference.com/w/cpp/language/for

https://en.cppreference.com/w/cpp/language/for

Using loops and counting
Using the loop statement5

size_t result = 0;
for(size_t i = 1; i != 5; i++){

result = result + i;
}

Condition
I The variable i is only available inside the loop’s body
I The loop will execute the statements in the curly

braces until i is equal to 5
I The value of i is incremented after all statements are

executed
I i++ is equivalent to i = i+1

5https://en.cppreference.com/w/cpp/language/for

https://en.cppreference.com/w/cpp/language/for

The while statement6

size_t result = 0;
size_t i = 1;
while (i != 5) {

result += i;
i++;

}

Condition
I i != 5 the statement within the curly braces will be

repeated five times
I != is the inequality operator and once i is equal to 5

the loop stops

6https://en.cppreference.com/w/cpp/language/while

https://en.cppreference.com/w/cpp/language/while

Conditionals7

Compute the sum of f(i) for i = 1, . . . , n

result =
n∑

i=1

f(i) with f(i) =

{
i, if i is even
i2, else

size_t result = 0;
for(size_t i = 1; i != 5; i++){

if(i % 1 == 0)
result = result + i;

else
result = result + i * i;

}

7https://en.cppreference.com/w/cpp/language/if

https://en.cppreference.com/w/cpp/language/if

Conditionals7

size_t result = 0;
for(size_t i = 1; i != 5; i++){

if(i % 1 == 0)
result = result + i;

else
result = result + i * i;

}

if statement
I If the condition is true the statements in the if branch

are executed
I If the condition is false the statements in the else

branch are executed

Logical operator
I % Modulo operator for integers

7https://en.cppreference.com/w/cpp/language/if

https://en.cppreference.com/w/cpp/language/if

Operators8

Logical operators
I && Logical and
I || Logial or
I !x Logical negation

Comparison operators
I == Compares to equal
I != Compares to unequal
I < Compares to be less
I > Compares to be higher
I <= Compares to be less or equal
I >= Compares to be higher or equal

8https://en.cppreference.com/w/cpp/language/operator_precedence

https://en.cppreference.com/w/cpp/language/operator_precedence

Working with strings

Reading strings

// Read person's name and greet the person
#include <iostream>
#include <string>

int main()
{

std::cout << "Please enter your name: ";
// Read the name
std::string name;
std::cin >> name;
// Writing the name
std::cout << "Hi, " << name << "!" << std::endl;
return 0;

}

Reading strings

#include <string>

std::string name;

Variables: Definition
I Variables have a name (name) and a type

(std::string)
I We need to include the string type, since it is not in

the core language
I We just defined the variable and currently it is a

empty or null string

Reading strings

std::cin >> name;

Variables: Initialization
I Now we initialize the string by reading from std::cin

and assigning the value to it
I The << operator writes a string to std::cout

I The >> operator reads a string to std::cin

Variables can be defined in three different ways:
I std::string name = "Peter Pan";

I std::string name; //empty string

I std::string stars(3,'*') // string of three stars

More details: https://en.cppreference.com/w/cpp/string/basic_string

https://en.cppreference.com/w/cpp/string/basic_string

More functionality of strings

const std::string greetings = "Hi, " + name + "!";

Concatenation
+ operator combines string

Defining constants
const operator to make the promise that we will not
change the value later

const size_t length = greetings.size();

Getting the size
.size() operator to get the string’s size

Summary

Summary

After this lecture, you should know
I Structure of a C++ program
I Handling strings
I Loops and counting
I Conditionals
I Operators
I Built-in types

References

References I

	Administration/Organization
	Getting started
	Looping and counting
	Working with strings
	Summary
	References

