
Parallelism in C++
Lecture 1

Hartmut Kaiser (hkaiser@cct.lsu.edu)
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Parallelism

• Preconditions for parallelization
 Availability of independent work (tasks)

 Availability of more than one computing elements 
(cores)

• Parallel computing means

 Executing more than one thing (thread) concurrently

 Maintain correct order of execution

 Protect data that is accessed by more than one thread

 Synchronize execution in between threads
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Amdahl’s Law (Strong Scaling)

• S: Speedup

• P: Proportion of parallel code

• N: Number of processors
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𝑆 =
1

1 − 𝑃 +
𝑃
𝑁

Figure courtesy of Wikipedia (http://en.wikipedia.org/wiki/Amdahl's_law)



Rule 1

Parallelize Applications as 
Much as Humanly Possible
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The 4 Horsemen of the Apocalypse



•Starvation
 Insufficient concurrent work to maintain high utilization of 

resources

•Latencies
 Time-distance delay of remote resource access and services

•Overheads
 Work for management of parallel actions and resources on 

critical path which are not necessary in sequential variant

•Waiting for Contention resolution

 Delays due to lack of availability of oversubscribed shared 
resources
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The 4 Horsemen of the Apocalypse



Universal Scalability Law

• λ: Scaling efficiency

• δ: Contention

• κ: Latencies (‘Crosstalk’)

• N: Number of processors
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Real-world Problems
• Insufficient parallelism imposed by the programming 

model
 OpenMP: enforced barrier at end of parallel loop

 MPI: global (communication) barrier after each time step

• Over-synchronization of more things than required by algorithm
 MPI: Lock-step between nodes (ranks)

• Insufficient coordination between on-node and off-node parallelism
 MPI+X: insufficient co-design of tools for off-node, on-node, and accelerators

• Distinct programming models for different types of parallelism
 Off-node: MPI, On-node: OpenMP, Accelerators: CUDA, etc.
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Real-world Problems
• Even standard algorithms added to C++17 enforce 

fork-join semantics
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Fork/Join Parallelism
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Rule 2

Use a Programming Environment 
that Embraces SLOW
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Overheads: Thought-Experiment
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Overheads: The Worst of All?
• Even relatively small amounts of work can benefit from being split 

into smaller tasks
 Possibly huge amount of ‘threads’ 

 In the previous thought-experiment we ended up considering up to 10 million threads

 Best possible scaling is predicted to be reached when using 10000 threads (for 1 second

worth of work)

• Several problems
 Impossible to work with that many kernel threads (p-threads)

 Impossible to reason about this amount of tasks

 Requires abstraction mechanism
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Rule 3

Allow for your 
Grainsize to be Variable
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Overheads: The Worst of All?

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l 
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
, 
H

a
rt

m
u

t 
K

a
is

e
r

15

1

10

100

1000

10000

100000

1000000

0

0.5

1

1.5

2

2.5

3

100 1000 10000 100000 1000000 10000000 100000000

A
v
e
ra

g
e
 T

h
re

a
d

 E
x
e
cu

ti
o
n

 T
im

e

E
x
e
cu

ti
o
n

 t
im

e
 (

re
la

ti
v
e
 t

o
 s

e
q

u
e
n

ti
a

l 

ti
m

e
)

Grainsize (amount of work per thread)

Execution Time over Grainsize

Sequential Time

Static chunks

Time (16 Cores)

Thread Length



Rule 4

Oversubscribe and 
Balance Adaptively
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The Challenges

•We need to find a usable way to fully parallelize 
our applications

•Goals are:
Expose asynchrony to the programmer without exposing 
additional concurrency

Make data dependencies explicit, hide notion of ‘thread’ 
and ‘communication’

Provide manageable paradigms for handling parallelism
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The Future of Computation
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What is a (the) Future?
• Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()
{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl;   // prints 42
}
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What is a (the) future
• A future is an object representing a result which has not been calculated yet

Locality 1

Suspend 
consumer
thread 

Execute 
another 
thread

Resume 
consumer
thread

Locality 2

Execute 
Future:

Producer 
thread

Future object 

Result is being 
returned

 Enables transparent synchronization 
with producer

 Hides notion of dealing with threads

 Represents a data-dependency

 Makes asynchrony manageable

 Allows for composition of several 
asynchronous operations

 (Turns concurrency into parallelism)
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Ways to Create a future

•Standard defines 3 possible ways to create 
a future, 
3 different ‘asynchronous providers’

 std::async

 std::packaged_task

 std::promise
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Promising a Future

• std::promise is main ‘producer’ of futures
 It gives away a future representing the value it 
received

Promise/future is a one-shot pipeline where the 
promise is the ‘sender’ and the future is the 
‘receiver’
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Demo
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