
Parallelism in C++
Lecture 1

Hartmut Kaiser (hkaiser@cct.lsu.edu)

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

1

Parallelism

• Preconditions for parallelization
 Availability of independent work (tasks)

 Availability of more than one computing elements
(cores)

• Parallel computing means

 Executing more than one thing (thread) concurrently

 Maintain correct order of execution

 Protect data that is accessed by more than one thread

 Synchronize execution in between threads

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

2

Amdahl’s Law (Strong Scaling)

• S: Speedup

• P: Proportion of parallel code

• N: Number of processors

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

3

𝑆 =
1

1 − 𝑃 +
𝑃
𝑁

Figure courtesy of Wikipedia (http://en.wikipedia.org/wiki/Amdahl's_law)

Rule 1

Parallelize Applications as
Much as Humanly Possible

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

4

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

5

The 4 Horsemen of the Apocalypse

•Starvation
 Insufficient concurrent work to maintain high utilization of

resources

•Latencies
 Time-distance delay of remote resource access and services

•Overheads
 Work for management of parallel actions and resources on

critical path which are not necessary in sequential variant

•Waiting for Contention resolution

 Delays due to lack of availability of oversubscribed shared
resources

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

6

The 4 Horsemen of the Apocalypse

Universal Scalability Law

• λ: Scaling efficiency

• δ: Contention

• κ: Latencies (‘Crosstalk’)

• N: Number of processors

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

7

Real-world Problems
• Insufficient parallelism imposed by the programming

model
 OpenMP: enforced barrier at end of parallel loop

 MPI: global (communication) barrier after each time step

• Over-synchronization of more things than required by algorithm
 MPI: Lock-step between nodes (ranks)

• Insufficient coordination between on-node and off-node parallelism
 MPI+X: insufficient co-design of tools for off-node, on-node, and accelerators

• Distinct programming models for different types of parallelism
 Off-node: MPI, On-node: OpenMP, Accelerators: CUDA, etc.

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

8

Real-world Problems
• Even standard algorithms added to C++17 enforce

fork-join semantics

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

9

Fork/Join Parallelism

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

10

Rule 2

Use a Programming Environment
that Embraces SLOW

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

11

Overheads: Thought-Experiment

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

12

0

0.5

1

1.5

2

2.5

3

1 10 100 1000 10000 100000 1000000 10000000

Ex
ec

u
ti

o
n

 t
im

e
(r

el
at

iv
e

to
 s

eq
u

en
ti

al
 t

im
e)

Grain Size (amount of work per thread)

Execution Time over Grain Size
(for different amounts of overheads per thread, 16 Cores)

Sequential Time

1µs Overhead

100µs Overhead

10ms Overhead

Overheads: The Worst of All?
• Even relatively small amounts of work can benefit from being split

into smaller tasks
 Possibly huge amount of ‘threads’

 In the previous thought-experiment we ended up considering up to 10 million threads

 Best possible scaling is predicted to be reached when using 10000 threads (for 1 second

worth of work)

• Several problems
 Impossible to work with that many kernel threads (p-threads)

 Impossible to reason about this amount of tasks

 Requires abstraction mechanism

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

13

Rule 3

Allow for your
Grainsize to be Variable

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

14

Overheads: The Worst of All?

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

15

1

10

100

1000

10000

100000

1000000

0

0.5

1

1.5

2

2.5

3

100 1000 10000 100000 1000000 10000000 100000000

A
v
e
ra

g
e
 T

h
re

a
d

 E
x
e
cu

ti
o
n

 T
im

e

E
x
e
cu

ti
o
n

 t
im

e
 (

re
la

ti
v
e
 t

o
 s

e
q

u
e
n

ti
a

l

ti
m

e
)

Grainsize (amount of work per thread)

Execution Time over Grainsize

Sequential Time

Static chunks

Time (16 Cores)

Thread Length

Rule 4

Oversubscribe and
Balance Adaptively

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

16

The Challenges

•We need to find a usable way to fully parallelize
our applications

•Goals are:
Expose asynchrony to the programmer without exposing
additional concurrency

Make data dependencies explicit, hide notion of ‘thread’
and ‘communication’

Provide manageable paradigms for handling parallelism

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

17

The Future of Computation

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

18

What is a (the) Future?
• Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()
{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl; // prints 42
}

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

19

What is a (the) future
• A future is an object representing a result which has not been calculated yet

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

 Enables transparent synchronization
with producer

 Hides notion of dealing with threads

 Represents a data-dependency

 Makes asynchrony manageable

 Allows for composition of several
asynchronous operations

 (Turns concurrency into parallelism)

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

20

Ways to Create a future

•Standard defines 3 possible ways to create
a future,
3 different ‘asynchronous providers’

 std::async

 std::packaged_task

 std::promise

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

21

Promising a Future

• std::promise is main ‘producer’ of futures
 It gives away a future representing the value it
received

Promise/future is a one-shot pipeline where the
promise is the ‘sender’ and the future is the
‘receiver’

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

22

Demo

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

23

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

25

