
Parallelism in C++
Lecture 1

Hartmut Kaiser (hkaiser@cct.lsu.edu)

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

1

Parallelism

• Preconditions for parallelization
 Availability of independent work (tasks)

 Availability of more than one computing elements
(cores)

• Parallel computing means

 Executing more than one thing (thread) concurrently

 Maintain correct order of execution

 Protect data that is accessed by more than one thread

 Synchronize execution in between threads

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

2

Amdahl’s Law (Strong Scaling)

• S: Speedup

• P: Proportion of parallel code

• N: Number of processors

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

3

𝑆 =
1

1 − 𝑃 +
𝑃
𝑁

Figure courtesy of Wikipedia (http://en.wikipedia.org/wiki/Amdahl's_law)

Rule 1

Parallelize Applications as
Much as Humanly Possible

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

4

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

5

The 4 Horsemen of the Apocalypse

•Starvation
 Insufficient concurrent work to maintain high utilization of

resources

•Latencies
 Time-distance delay of remote resource access and services

•Overheads
 Work for management of parallel actions and resources on

critical path which are not necessary in sequential variant

•Waiting for Contention resolution

 Delays due to lack of availability of oversubscribed shared
resources

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

6

The 4 Horsemen of the Apocalypse

Universal Scalability Law

• λ: Scaling efficiency

• δ: Contention

• κ: Latencies (‘Crosstalk’)

• N: Number of processors

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

7

Real-world Problems
• Insufficient parallelism imposed by the programming

model
 OpenMP: enforced barrier at end of parallel loop

 MPI: global (communication) barrier after each time step

• Over-synchronization of more things than required by algorithm
 MPI: Lock-step between nodes (ranks)

• Insufficient coordination between on-node and off-node parallelism
 MPI+X: insufficient co-design of tools for off-node, on-node, and accelerators

• Distinct programming models for different types of parallelism
 Off-node: MPI, On-node: OpenMP, Accelerators: CUDA, etc.

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

8

Real-world Problems
• Even standard algorithms added to C++17 enforce

fork-join semantics

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

9

Fork/Join Parallelism

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

10

Rule 2

Use a Programming Environment
that Embraces SLOW

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

11

Overheads: Thought-Experiment

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

12

0

0.5

1

1.5

2

2.5

3

1 10 100 1000 10000 100000 1000000 10000000

Ex
ec

u
ti

o
n

 t
im

e
(r

el
at

iv
e

to
 s

eq
u

en
ti

al
 t

im
e)

Grain Size (amount of work per thread)

Execution Time over Grain Size
(for different amounts of overheads per thread, 16 Cores)

Sequential Time

1µs Overhead

100µs Overhead

10ms Overhead

Overheads: The Worst of All?
• Even relatively small amounts of work can benefit from being split

into smaller tasks
 Possibly huge amount of ‘threads’

 In the previous thought-experiment we ended up considering up to 10 million threads

 Best possible scaling is predicted to be reached when using 10000 threads (for 1 second

worth of work)

• Several problems
 Impossible to work with that many kernel threads (p-threads)

 Impossible to reason about this amount of tasks

 Requires abstraction mechanism

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

13

Rule 3

Allow for your
Grainsize to be Variable

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

14

Overheads: The Worst of All?

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

15

1

10

100

1000

10000

100000

1000000

0

0.5

1

1.5

2

2.5

3

100 1000 10000 100000 1000000 10000000 100000000

A
v
e
ra

g
e
 T

h
re

a
d

 E
x
e
cu

ti
o
n

 T
im

e

E
x
e
cu

ti
o
n

 t
im

e
 (

re
la

ti
v
e
 t

o
 s

e
q

u
e
n

ti
a

l

ti
m

e
)

Grainsize (amount of work per thread)

Execution Time over Grainsize

Sequential Time

Static chunks

Time (16 Cores)

Thread Length

Rule 4

Oversubscribe and
Balance Adaptively

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

16

The Challenges

•We need to find a usable way to fully parallelize
our applications

•Goals are:
Expose asynchrony to the programmer without exposing
additional concurrency

Make data dependencies explicit, hide notion of ‘thread’
and ‘communication’

Provide manageable paradigms for handling parallelism

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

17

The Future of Computation

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

18

What is a (the) Future?
• Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal_answer() { return 42; }

void deep_thought()
{

future<int> promised_answer = async(&universal_answer);

// do other things for 7.5 million years

cout << promised_answer.get() << endl; // prints 42
}

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

19

What is a (the) future
• A future is an object representing a result which has not been calculated yet

Locality 1

Suspend
consumer
thread

Execute
another
thread

Resume
consumer
thread

Locality 2

Execute
Future:

Producer
thread

Future object

Result is being
returned

 Enables transparent synchronization
with producer

 Hides notion of dealing with threads

 Represents a data-dependency

 Makes asynchrony manageable

 Allows for composition of several
asynchronous operations

 (Turns concurrency into parallelism)

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

20

Ways to Create a future

•Standard defines 3 possible ways to create
a future,
3 different ‘asynchronous providers’

 std::async

 std::packaged_task

 std::promise

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

21

Promising a Future

• std::promise is main ‘producer’ of futures
 It gives away a future representing the value it
received

Promise/future is a one-shot pipeline where the
promise is the ‘sender’ and the future is the
‘receiver’

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

22

Demo

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

23

1
0

/6
/2

0
2

0
P

a
ra

ll
e
l
P

ro
g
ra

m
m

in
g
 i
n

 C
+

+
,
H

a
rt

m
u

t
K

a
is

e
r

25

