Parallelism 1n C++

Lecture 1

Hartmut Kaiser (hkaiser@cct.lsu.edu)

10/6/2020

Parallelism

- Preconditions for parallelization
- Availability of independent work (tasks)

- Availability of more than one computing elements
(cores)

- Parallel computing means
- Executing more than one thing (thread) concurrently

~
0]
wn
.-
N
e
=)
=
g
-
B~
<
+
+
(@)
=i
.-
o0
&

- Maintain correct order of execution

ogrammi

- Protect data that i1s accessed by more than one thread
- Synchronize execution in between threads

Parallel Pr

@ STE||AR GROUP

&)
N
©
[\
~
©
e
=S
—

Amdahl’s Law (Strong Scaling)

Amdahl's Law

20.00

1 18.00 d el

— Parallel Portion
S - P 16.00 ,f/ 50%
/ — TE%
1 —_— P) _I_ R 14.00 90%

(N / — 95%

12.00 i

Mumber of Processors

glu.nc .r/ S é

B 2.00 / ""/ﬂ :‘5

- S Speedup 6.00 va 8
4.00 V/ o g

. . — o

- P: Proportion of parallel code 200 2
POCQ

o D'UDH 4 wm o L m Wbt 4 @ = @ b Dj

- N: Number of processors " TR R A A8 EEE g &
k

Figure courtesy of Wikipedia (http:/en.wikipedia.org/wiki/Amdahl's_law)

@ STE||AR GROUP

Rule 1

Parallelize Applications as
Much as Humanly Possible

@ STE||AR GROUP

020%/9/0T I9STRY] INWIYIRH ‘++) UL SUTWWRISOIJ [o[[eIe]

o
o
—
[}
bt
=

S
o
<
[&]
o}
it
S
S
&
)
>
(%2}
O
2
=
3
[}
y O

The 4 Horsemen of the Apocalypse

@ STE||AR GROUP

The 4 Horsemen of the Apocalypse

10/6/2020

. N R
- Starvation == %\

* Insufficient concurrent work to maintain high utilization g
resources

- Latencies

« Time-distance delay of

« DeM¥s due to lack of availability of oversubscribed shared
resources

@ STE||AR GROUP

Parallel Programming in C++, Hartmut Kaiser

=)
(o))
=)
N
=
R
-~
)
—

Universal Scalability Law

X(N) A
l4+0(N—-1)+&N(N —1)
o 5
o g
Q s
= 5
™ | am
o e
= +
. . .. S1T T <
- A Scaling efficiency T I Iy £
o =
. . S g
- 0: Contention S :
. ° i /:—’—/——""kf EC};
. x: Latencies (‘Crosstalk’) o . =
T T T T =
- N: Number of processors 5 10 15 20 g
N

@ STE||AR GROUP

10/6/2020

Real-world Problems

- Insufficient parallelism imposed by the programming
model
* OpenMP: enforced barrier at end of parallel loop

- MPI: global (communication) barrier after each time step

- Over-synchronization of more things than required by algorithm
- MPI: Lock-step between nodes (ranks)

- Insufficient coordination between on-node and off-node parallelism
- MPI+X: insufficient co-design of tools for off-node, on-node, and accelerators

- Distinct programming models for different types of parallelism
* Off-node: MPI, On-node: OpenMP, Accelerators: CUDA, etc.

&~
()
4]

-
(v}

N4

=
=
=i
+~
&
(o]
+

-+

@)
=i

o=
an
o

=
=
=i
[av]
)
o0
o
-

A

—
)

—

—
(o]
&
(2

ol

@ STE||AR GROUP

10/6/2020

Real-world Problems

- Even standard algorithms added to C++17 enforce
fork-join semantics

Parallel Task | Parallel Task Il Parallel Task Il

/MH

Master Thread

Parallel Task | Parallel Task Il Parallel Task Il

Master Thread . I

. W\ rd .
. Vs £
' . . L 7 v
+ : : \ i -
L . : A . .-”:
/ . . i F R
. . 4 .
4
W ’ L
A) .

&~
()
4]

o=
(v}

N

=
=
=i

it
~
(o]
+

-+

@)
=i

o=
an
o

=
=
=i
[av]
=
o0
o
-

[l

—
)

—

—
(o]
&
(2

[aW

@ STE||AR GROUP

Fork/Join Parallelism

reduction

barrier

|

| barrier

% active thread H idle thread

@ STE||AR GROUP

10/6/2020

=
Q
n
o
:2'5
+
=
g
R
~
£
+
+
o
=
.
an
g
o
2
g
(V]
~
on
o
~
Ay
—
)
—
—
(V]
~
[y
[l

o
o
N
o
o
N
s
©
>
(a»)
)
—

Rule 2

Use a Programming Environment
that Embraces SLOW

@ STE||AR GROUP

10/6/2020

Overheads: Thought-Experiment

Execution Time over Grain Size
(for different amounts of overheads per thread, 16 Cores)
3
(]
g | \ 0 v Y] Sequential Time
Z 25 5
o 1us Overhead &
+ <
S —a— 100us Overhead hd]
= =
s 2 —=#— 10ms Overhead =
5 £
o <
15 o
2 f
+ (@)
© =
TR B e . Gt e SR P A
= &
w =
E 0.5 g
S
5 o =
[eD)

o 1 10 100 1000 10000 100000 1000000 10000000 =
L —

Grain Size (amount of work per thread) =

@ STE||AR GROUP

10/6/2020

Overheads: The Worst of All?

- Even relatively small amounts of work can benefit from being split
ito smaller tasks
* Possibly huge amount of ‘threads’
* In the previous thought-experiment we ended up considering up to 10 million threads

- Best possible scaling is predicted to be reached when using 10000 threads (for 1 second
worth of work)

- Several problems
- Impossible to work with that many kernel threads (p-threads)
- Impossible to reason about this amount of tasks
- Requires abstraction mechanism

~
D)
4]
o=
N
e
=)
=
=)
+~
o
(av]
+
=+
O
=i
o=
o0
o
=
=
=)
<
=
)
o
S~
A
—
)
—
—
r:d
o
r:d
Ay

@ STE||AR GROUP

Rule 3

Allow for your
(Grainsize to be Variable

@ STE||AR GROUP

o
o
N
o
o
N
s
©
>
)
)
—

Overheads: The Worst of All?

Execution Time over Grainsize
3 1000000

----- Sequential Time

—

(o]

o=

o i =
g 2.5 Statlc Chunks 100000 .g

S —e— Time (16 Cores) Bg B
N S C
S 9 —=—Thread Length 10000 g f
2 g :
S Es 1000 & =
: = .
~ o &y +
~) =+
b} [(@)
2 k=
.- 1 100 E on
+~) o
- :
S 05 10 > bb
D < 2
" oW
- g
0 1 s
100 1000 10000 100000 1000000 10000000 100000000 £

Grainsize (amount of work per thread)

@ STE||AR GROUP

Rule 4

Oversubscribe and
Balance Adaptively

@ STE||AR GROUP

The Challenges

- We need to find a usable way to fully parallelize
our applications

- Goals are:

- Expose asynchrony to the programmer without exposing
additional concurrency

- Make data dependencies explicit, hide notion of ‘thread’
and ‘communication’

- Provide manageable paradigms for handling parallelism

@ STE||AR GROUP

The Future of Computation

@ STE||AR GROUP

&)
N
©
[\
~
©
e
=S
—

What is a (the) Future?

- Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal answer() { return 42; }

void deep thought()

future<int> promised answer = async(&universal answer); =

.

3

// do other things for 7.5 million years -
cout << promised answer.get() << endl; // prints 42 §

} 2
s

@ STE||AR GROUP

&)
N
©
[\
~
©
~
(@]
—

What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 = Enables transparent synchronization
_ : with producer 2
Future object Locality 2 z
— VA S . — = Hides notion of dealing with threads E
consumer ———=17" | Future: s
thread L - * Represents a data-dependency -
v . thread S
Execute ya & = e » Makes asynchrony manageable
i &
thread " 141 £
0 Result is being = Allows for comp081thn of several -
Resume returned asynchronous operations 2
consumer &
thread « (Turns concurrency into parallelism) e
Q':S

@ STE||AR GROUP

10/6/2020

Ways to Create a future

- Standard defines 3 possible ways to create
a future,

- 3 different ‘asynchronous providers’
- std::async
- std:'packaged_task
- std:'promise

~
D)
7))
o=
N
e
-
=
=)
+~
o
+
=+
O
=i
o=
o0
o

ogrammi

Parallel Pr

@ STE||AR GROUP

10/6/2020

Promising a Future

- std::promise 1s main ‘producer’ of futures

- It gives away a future representing the value it
received

- Promise/future i1s a one-shot pipeline where the
promise 1s the ‘sender’ and the future is the
‘recelver’

~
0]
wn
.-
ﬁ
N
e
=
=
g
-
B~
+
+
(@)
=i
.-
o0
&
=
5
g
f:\j
&
on
S
&
—
(eb)
—
pa—
C‘:
B~
=

@ STE||AR GROUP

0303/9/0T JOSTRY] INWIBH ‘++)) UL SUTWWRISOIJ [O[[BIeJ

Demo

.
o
o
o
(-
<
™)
=
(7))
~

CENTER FOR COMPUTATION
& TECHNOLOGY

&)
N
=)
[\
~
e}
~
(@]
—

Parallel Programming in C++, Hartmut Kaiser

DO
Ot

