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Parallelism

- Preconditions for parallelization
- Availability of independent work (tasks)

- Availability of more than one computing elements
(cores)

- Parallel computing means
- Executing more than one thing (thread) concurrently
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- Maintain correct order of execution

ogrammi

- Protect data that i1s accessed by more than one thread
- Synchronize execution in between threads
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Amdahl’s Law (Strong Scaling)

Amdahl's Law
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Figure courtesy of Wikipedia (http:/en.wikipedia.org/wiki/Amdahl's_law)
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Rule 1

Parallelize Applications as
Much as Humanly Possible
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The 4 Horsemen of the Apocalypse
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The 4 Horsemen of the Apocalypse
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. N R
- Starvation == %\

* Insufficient concurrent work to maintain high utilization g
resources

- Latencies

« Time-distance delay of

« DeM¥s due to lack of availability of oversubscribed shared
resources
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Universal Scalability Law
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Real-world Problems

- Insufficient parallelism imposed by the programming
model
* OpenMP: enforced barrier at end of parallel loop

- MPI: global (communication) barrier after each time step

- Over-synchronization of more things than required by algorithm
- MPI: Lock-step between nodes (ranks)

- Insufficient coordination between on-node and off-node parallelism
- MPI+X: insufficient co-design of tools for off-node, on-node, and accelerators

- Distinct programming models for different types of parallelism
* Off-node: MPI, On-node: OpenMP, Accelerators: CUDA, etc.
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Real-world Problems

- Even standard algorithms added to C++17 enforce
fork-join semantics

Parallel Task | Parallel Task Il Parallel Task Il

/MH

Master Thread

Parallel Task | Parallel Task Il Parallel Task Il

Master Thread . I
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Fork/Join Parallelism

reduction

barrier

|

| barrier

% active thread H idle thread
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Rule 2

Use a Programming Environment
that Embraces SLOW
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Overheads: Thought-Experiment

Execution Time over Grain Size
(for different amounts of overheads per thread, 16 Cores)
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Overheads: The Worst of All?

- Even relatively small amounts of work can benefit from being split
ito smaller tasks
* Possibly huge amount of ‘threads’
* In the previous thought-experiment we ended up considering up to 10 million threads

- Best possible scaling is predicted to be reached when using 10000 threads (for 1 second
worth of work)

- Several problems
- Impossible to work with that many kernel threads (p-threads)
- Impossible to reason about this amount of tasks
- Requires abstraction mechanism

~
D)
4]
o=
N
e
=)
=
=)
+~
o
(av]
+
=+
O
=i
o=
o0
o
=
=
=)
<
=
)
o
S~
A
—
)
—
—
r:d
o
r:d
Ay

@ STE||AR GROUP



Rule 3

Allow for your
(Grainsize to be Variable
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Overheads: The Worst of All?

Execution Time over Grainsize
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Rule 4

Oversubscribe and
Balance Adaptively
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The Challenges

- We need to find a usable way to fully parallelize
our applications

- Goals are:

- Expose asynchrony to the programmer without exposing
additional concurrency

- Make data dependencies explicit, hide notion of ‘thread’
and ‘communication’

- Provide manageable paradigms for handling parallelism
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The Future of Computation
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What is a (the) Future?

- Many ways to get hold of a (the) future, simplest way is to use (std) async:

int universal answer() { return 42; }

void deep thought()

future<int> promised answer = async(&universal answer); =

.

3

// do other things for 7.5 million years -
cout << promised answer.get() << endl; // prints 42 §

} 2
s
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What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 = Enables transparent synchronization
_ : with producer 2
Future object Locality 2 z
— VA S . — = Hides notion of dealing with threads E
consumer ———=17" | Future: s
thread L - * Represents a data-dependency -
v . thread S
Execute ya & = e » Makes asynchrony manageable
i &
thread " 141 £
0 Result is being = Allows for comp081thn of several -
Resume returned asynchronous operations 2
consumer &
thread « (Turns concurrency into parallelism) e
Q':S
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Ways to Create a future

- Standard defines 3 possible ways to create
a future,

- 3 different ‘asynchronous providers’
- std::async
- std:'packaged_task
- std:'promise
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Promising a Future

- std::promise 1s main ‘producer’ of futures

- It gives away a future representing the value it
received

- Promise/future i1s a one-shot pipeline where the
promise 1s the ‘sender’ and the future is the
‘recelver’
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CENTER FOR COMPUTATION
& TECHNOLOGY
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