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1. Introduction C++

This chapter introduces the core features of the C++ language. Specifically, we focus
on introducing the C++ standard template library (see Section 3), which is essential for
implementing mathematical equations and algorithms. Let us briefly look into this library
so that we may implement the numerical examples in Part V. For more details we refer to

• Koenig Andrew. Accelerated C++: practical programming by example. Pearson
Education India, 2000

since this book gives an excellent pragmatic overview with many examples. For even more
C++ basics, we refer to

• Bjarne Stroustrup. Programming: principles and practice using C++. Pearson
Education, 2014.

1.1 History of C and C++
The development of the programming language C started in 1972 as an improvement of
the language B1 language [82]. In 1978 the book by Dennis Ritchie and Brian Kernighan
The C Programming Language [59] became known as the informal specification of the C
language. In contrast to the simple and small standard library, C compilers varied widely
and had no standards. The American National Standards Institute (ANSI) began writing
the C standard based on the Unix implementation of the language. This later became the
foundation of the 1988 POSIX2 standard. One year later, the C standard was published as
ANSI X3.159-1989 ”Programming Language C.” More common names for this version are
ANSI C or C89. The International Organization of Standardization (ISO) adopted the
ANSI C specification and published it as ISO/IEC 9899:1990, which is called C90. Note
that C90 and C89 refer to the same standard. This standard was revised in the 1990s
and published as ISO/IEC 9899:1999 in 1999 which is the C99 standard. In 2007 the C11
standard was published and in 2018 the C18 standard.

Concurrently, in 1979, Bajarne Stroustrup began developing ”C with classes”3, which
later became C++. Stroustrup added classes, derived classes, inlining, and default arguments
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Listing 1.1: A simple C++ program, the so-called “Hello World” example.

1 // a small C++ program
2 #include <iostream >
3

4 int main()
5 {
6 std::cout << "Hello ,␣world!" << std::endl;
7 return 0;
8 }

to the C compiler [97]. The name C++ symbolizes the increment of C using the increment
operator ++. The C++ Programming Language launched in 1985, though without an official
standard [98]. Updated and standardized versions followed: In 1998 C++98 [62]; In 1999
C++ 2.0; In 2003 C++03 [20]; In 2011 C++11 [21]; In 2014 C++14 [22]. The latest
standard is C++17 [93], and the upcoming one is C++20.

1.2 Getting started with C++
To begin with C++ programming, we look at a simple C++ program: the classic”Hello
World” example. Listing 1.1 shows this program. The first line in green is a comment. Single-
line comments start with //. Programmers often use them to explain the functionality of
the program or the next lines of code. Once may also use multi-line comments4 by enclosing
the text within /* */. Comment early and often; comments are crucial for readability and
clarity of the program, especially if the code is shared with other collaborators. Fore more
details refer to [58].

The second line starts with a so-called include directive5 #include <iostream>. This
include directive incorporates functionality of the C++ standard library (see Chpater 3).
In our case we include the iostream header so that we may print ”Hello World” to the
terminal (see Line 6).

The fourth line int main() starts with the Main function6, which is the entry point
of the program. This means all subsequent lines are executed sequentially. Every C++
program which will be compiled to an executable file needs exactly one function called
main, which has an integer int as its return type. On most operating systems a return
value of zero means that the program executed successfully, and any other value (often 1
or -1) indicates a failure. The second-to-last line return is the return statement7, which
must match the return type in front of the int main().

Once we have written the program, we have to compile the C++ code into an executable
so that we can run the code and print “Hello world” to the terminal. There are a plethora
of C++ compilers8 available, but this book will use the GNU Compiler Collection (GCC)
for all examples. Line 1 in Listing 1.2 shows how to compile the file lecture1-1.cpp,
which contains the C++ code in Listing 1.1, to an executable. GCC provides the g++
compiler to compile C++ code and the gcc compiler for C code. As the first argument
to the g++ compiler, we enter the C++ file name and add the -o option to specify the
name of the executable. To run the generated executable, we type ./lecture-1-1 in the
terminal. For basic usage of the Linux terminal refer to [73, 83].
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Listing 1.2: Compilation and execution of the C++ program.

1 g++ lecture1 -1. cpp -o lecture1 -1
2 ./lecture1 -1

Exercise 1.1 Download the example program9 from GitHub and compile it with your favorite
C++ compiler. After running the example you can try to modify it–For example you could print
a different text or add a second line to the output. �

1.3 Fundamental data types

In this section we introduce the fundamental data types10 provided by the C++ language.
First, the numeric data types. To represent natural numbers N= {0,1,2, . . .} the unsigned
int data type is available. To represent integer numbers Z= {. . . ,−2,−1,0,1,2, . . .} the

int data type is available. For these data types we can apply the following sizes: short,
long, and long long. In the #include <climits>11 header the minimal and maximal
value of all integer data types are defined. For example the minimal value of int data type
is given by INT_MIN and the maximal value by INT_MAX, respectively. For more details
about the binary numeral system, refer to [34].

To represent real numbers R the float data type and double data type are available.
In the #include <cfloat>12 header the minimal and maximal value of all floating point
data types are defined. For example the minimal value of double data type is given by
DBL_MIN and the maximal value by DBL_MAX, respectively.

Fore more details about the IEEE 474 standard for how floating point numbers are
represented in the computer, refer to [35, 50]. Table 1.1 summarizes all the available
numeric data types and their ranges. The next section shows how to get the range of the
IEEE 474 standard for floating point numbers.

Data type Size (Bytes) Min Max

Natural numbers N

unsigned short int 2 0 65,535
unsigned int 4 0 4,294,967,295
unsigned long int 4 0 4,294,967,295
unsigned long long int 8 0 8,446,744,073,709,551,615

Integer numbers Z

short int 2 -32,768 32,768
int 4 -2,147,483,648 2,147,483,648
long long int 8 −263 263 −1

Real numbers R

float 4
double 8

Table 1.1: Overview of the fundamental numeric data types.

To represent a boolean value we use the B = {0,1} the bool data type which has
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Listing 1.3: Computation of the sum from 1 up to n using the for loop statement.

1 // Compute the sum using a for loop
2 #include <iostream >
3

4 int main()
5 {
6 unsigned int result = 0;
7 unsigned int n = 10;
8

9 for(size_t i = 0; i < n; i=i+1)
10 result = result + i;
11

12 std::cout << "Result=␣" << result << std::endl;
13

14 return 0;
15 }

exactly one of the two available values, true or false. Note that the C++ STL offers
std::complex13 for complex numbers C, however, this one is not within the fundamental
data types.

1.4 Statements and flow control

1.4.1 Iteration statements

For some applications, we have to repeat an instruction or group of instructions multiple
times. The C++ language provides two iteration statements: the for loop and the while
loop. Let us look how to compute the sum of the numbers from 1 up to n

r =
n

∑
i=1

i. (1.1)

The first solution uses a for loop statement14, which is shown in Listing 1.3. Line 9
shows the for loop statement with its three arguments. First, the so–called loop variable
size_t i = 0 which is initialized to zero. Note that the loop variable is only defined within
the loop’s body (The part between the curly braces). Second, the condition statement
i < n, which means that the loop body is repeated until the variable i is equal to or larger
than n. The third statement manipulates the loop variable. In our case the loop variable
is incremented by one after each execution of the loop body. Note that we use the for
loop statement if we know in advance exactly how many times we want to repeat a block
of code.

The second option employs a while loop statement15, which is shown in Listing 1.4.
Line 10 shows the while loop statement with its one argument. This is the condition
statement i < n, which means that the loop body is repeated until the variable i is equal
to or larger than n. Note in the previous example we had three arguments. In this case
the loop variable is declared before the loop in Line 9, and the third statement appears
in Line 13 where the loop variable is incremented by one in each iteration. Note that
we use the while loop statement, if we do not know the number of iterations in advance.
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Listing 1.4: Computation of the sum from 1 up to n using the while loop statement..

1 // Compute the sum using a while loop
2 #include <iostream >
3

4 int main()
5 {
6 unsigned int result = 0;
7 unsigned int n = 10;
8

9 size_t i = 0;
10 while ( i < n)
11 {
12 result = result + i;
13 i+= 1;
14 }
15 std::cout << "Result=␣" << result << std::endl;
16

17 return 0;
18 }

This example demonstrates that we can write every for loop statement as a while loop
statement. For more details we refer to [6, Chapter 2].

Exercise 1.2 Explain in your own words in which cases you should use a for loop statement
and a while loop statement. �

1.4.2 Selection statements
For some applications, different sections of code should run depending on certain conditions.
Equation 1.2 shows how to compute the sum from 1 to n with different cases for even and
odd numbers. If the number is even, it is added to the result, but if it is odd, its square is
added to the result.

r =
n

∑
i=1

f (i) with f (i) =

{
i, if i is even
i2, else

(1.2)

Listing 1.5 shows the implementation of Equation 1.2 using a for loop. The skeleton of the
for loop is identical to the one in Listing 1.3, but the if statement16 in Line 8 is added to
check whether the current number in the series is even or odd. The if statement takes
exactly one argument, the condition statement. If the statement is evaluated as true the
code between if and else runs. If the statement is evaluated as false the code line after
else runs. It is also possible to use else if after the first if.

The second selection statement is the switch statement17. We use this statement to
execute different code branches depending on a single variable. Listing 1.6 shows one
example that writes the name of the color to the standard output. In this case we use an
enumeration enum18 to store the colors. The switch takes one argument and executes the
code between the matching case and the following break. For more details we refer to [6,
Chapter 2].
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Listing 1.5: Computation of the sum from one up to n using the selection statement.

1 // Example with if statement
2 #include <iostream >
3

4 int main()
5 {
6 size_t result = 0;
7 for(size_t i = 1; i != 5; i++){
8 if( i % 1 == 0)
9 result = result + i;

10 else
11 result = result + i * i;
12 }
13

14 std::cout << "Result=␣" << result << std::endl;
15

16 return 0;
17 }

1.5 Operators

For the example in Listing 1.3 we have seen the operator i<n which is a so–called comparison
operator. Next to the comparison operators, C++ language has following operators19:

• Comparison operators, see Table 1.2,
• Arithmetic operators, see Table 1.3,
• Logical operators, see Table 1.4, and
• Assignment operators, see Table 1.5,

logical operators, arithmetic, and assignment.

Exercise 1.3 Write a small C++ program using selection statements and operators to determine
if a given year is a lap year. Following logical statements should be implemented:

• If year is divided by 4 but not by 100, then it is a leap year.
• If year is divided by both 100 and 400, then it is a leap year.
• If year is divided by 400, then it is a leap year.
• And in all other cases, it is not a leap year.

�

1.5.1 Operator overloading

The operators in the previous section are defined for the fundamental data types, see
Section 1.3, and for the STL containers, see Section 3.2, if applicable. However, for
own defined struct and class these are not defined and the programmer has to define
them. With C++ 17 38 operators can be overloaded and two more operators were added
since C++ 2020. Let us look into the struct for the mathematical vector. We refer to
Section 1.6.2 for more details about struct and focus on the overloading of operators in
this section.

Listing 1.7 shows the definition of the struct vector as a template template<typename
T>. For more details, we refer to Section 1.8. To do some operation like to add two vectors
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Operator Name Example

== Equal to x==y
!= Not equal x!=y
> Greater than x > y
< Less than x < y
>= Greater than or equal x >= y
<= Less than or equal x <= y

Table 1.2: Comparison operators

Operator Name Description Example

+ Addition Computes the sum of two values 2+2 = 4
- Subtraction Computes the difference of two values 5−3 = 2
/ Division Divides two values 6/2 = 3
* Multiplication Multiplies two values 2×2 = 4
% Modulo Returns the division remainder 2%1=0
++ Increments Add plus one to the value 1++=2
-- Decrements Subtract one of the value 1--=0

Table 1.3: Arithmetic operators

Operator Name Description Example

&& Logical and Returns true if both statements are true x > 5 && x < 10
|| Logical or Returns true if one statement is true x > 5 | y < 10|
! Logical not Inverse the statement !(x > 5 && x < 10)

Table 1.4: Logical operators

Operator Name Example Equivalent

= Assignment x = 5 x = 5
+= Plus equal x+= 5 x = x + 5
-= Minus equal x-= 5 x = x - 5
*= Multiplication equal x*= 5 x= x * 5
/= Division equal x/= 5 x= x / 5
%= Modulo equal x%= 5 x = x % 5

Table 1.5: Assignment operators
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Listing 1.6: Computation of the sum from one up to n using the selection statement.

1 // Example for a switch statement
2 #include <iostream >
3

4 int main()
5 {
6 enum color {RED , GREEN , BLUE};
7 switch(RED) {
8 case RED: std::cout << "red\n"; break;
9 case GREEN: std::cout << "green\n"; break;

10 case BLUE: std::cout << "blue\n"; break;
11 }
12

13 return 0;
14 }

vector<double>a; and vector<double>b; we have to define the operator +. This is done
in Line 7 and is similar to the definition of a function. The name of the function has to
be operator+ since we overload the plus operator. As the argument a second vector rhs
in our example the vector b is provided. Since we return a new vector the return type of
the function is vector<T>. The values of the new vector are the additions of the vector
components. Because we overloaded the plus operator, we can write following expression
vector<double> c = a+b;. However, for the expression vector<double> c = a-b; the
C++ compiler would report following error ”error: no match for ‘operator-’ (operand types
are ‘vector’ and ‘vector’)“ since the minus operator was not overloaded.

Exercise 1.4 Overload the minus and the multiplication operator for the struct vector. �

In Line 11 the output parameter << is overloaded to print the coordinate values to the
standard output stream. For this operator two arguments are provided. The ostream& os
and after this the vector to be printed. In Line 13 the vector coordinates are printed to the
output stream with the predefined operator <<. The return type of the operator overload
function is of the type ostream&. For this operator overload, the keyword friend21 is
needed. using the friend declarations allows a function or another class access to private
and protected members of the struct.

Exercise 1.5 Overload the input operator >> for the struct vector. �

1.6 Structuring source code

For large code bases, we like to organize the code and avoid to have one huge file with
thousand of lines. There, C++ provides two fundamental ways to organize the code

1. To structure the code it self, we can use functions, e.g. double norm(), and struct
or class.

2. To split the code into separated files to make all files shorter and separate the code
by its functionality, we can use the s-called header files and source files.

For more details we refer to [6, Chapter 4]. Within the computer science, the research area
software engineering deals with the aspect how to organize large code bases and make it
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Listing 1.7: Example for the operator overload for the plus operator and the output operator.

1 template <typename T>
2 struct vector {
3 T x;
4 T y;
5 T z;
6 // Overload the addition operator
7 vector <T> operator +( const vector <T> rhs){
8 return vector <T>( x + rhs.x, y + rhs.y, z + rhs.z );
9 }

10 // Overload the output operator
11 friend ostream& operator
12 <<(ostream& os, const vector <T>& vec)
13 {
14 os << vec.x << "␣" << vec.y << "␣" << vec.z;
15 return os;
16 }
17 };

Listing 1.8: Example for a function definition to compute the maximum of two numbers.

1 int max(int a, int b)
2 {
3 return a>b?a:b;
4 }

maintainable. For more details, we refer to [49, 94].

1.6.1 Functions
To use code again and do not have to repeat code blocks multiple times, one can use function
definitions22. Listings 1.8 shows the definition of the function max. In Line 1 the return type
int of the function is defined which means that this function will return one integer value.
This is happening in Line 3 using the return23 keyword. If the function has no return
value, the keyword void is used. In Line 1 the name of the function24 max is defined and in
the parentheses the function arguments are provided separated by commas. In this example
two integer values with the name a and b are provided. For the return value, a short
form of the if statement. the so–called conditional operator25, is provided which means
if a> b return a and else return b. The function is called as double result = max(5,7.7).

Function are defined between #include and int main (void) in the source code file.
Listing 1.9 shows the usage of a function definition for the example in Equation 1.2. For
more details we refer to [6, Chapter 4].

1.6.2 Struct
In some case, we like to group data, for example to represent a vector v = (x,y,z)T ∈ R3.
Here, the struct26 expression is provided. Note that the struct was introduced in the
C language and its companion in the C++ language is the class expression. However,
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Listing 1.9: Example for a function definition to compute Equation 1.2.

1 // Example: function defintion
2 #include <iostream >
3

4 size_t f(size_t i)
5 {
6 if( i % 1 == 0)
7 return i;
8 else
9 return i * i;

10 }
11

12 int main()
13 {
14 size_t result = 0;
15 for(size_t i = 1; i != 5; i++){
16 result = f(i);
17 }
18

19 std::cout << "Result=␣" << result << std::endl;
20

21 return 0;
22 }

to make the C language a subset of the C++ language, the struct is still available.
Listing 1.10 shows the struct with the three variables for each direction of the vector space.
To declare a vector, we just write struct vector v to have an vector with the name v
and to initialize the vector with the unit vector struct vector v = {1,1,1}27. To access
the x component of the vector, we write v.x and to assign a new value the expression
v.x=42 is used. For more details we refer to [6, Chapter 4].

Constructor

Each struct and class has a default constructor28. However, one can overload the
constructor for example to initialize the vector a zero v = {0,0,0}. Line 11 shows the
constructor to initialize an zero vector. The constructor is like a function without the
return option with the same name as the struct and class. As the constructor arguments
the three vector components are given. Note that we assign the value zero to all of them.
In Line 12 we assign the argument’s values to the variables within the struct by using
x(x) which means that we assign the double x of the struct the value of the x in the
parentheses. Now we can initialize the struct in two different ways. First, using struct
vector v; will result in v = {0,0,0} since we assign zero to all the values. Second, using
struct vector v = vector(1,2,3); will result in v = {1,2,3}. For more details we refer
to [6, Chapter 4].

Member function

A often used task is to compute the length of a vector
√

x2 + y2 + z2, thus we want to add
this function to the struct vector to call norm() to compute the norm, see Line 15. The
syntax for member functions is the same as for functions. see Section 1.6.1. The main
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Listing 1.10: Example for a structure for a three dimensional vector.

1 #include <cmath >
2

3 struct vector
4 {
5 // vector components
6 double x;
7 double y;
8 double z;
9

10 // constructor
11 vector(double x=0, double y=0, double z=0)
12 x(x), y(y), z(z) {}
13

14 // member function to compute the vector ’s length
15 double norm(){
16 return std::sqrt(x*x+y*y+z*z);
17 }
18 }

difference is that the function definition is between the parentheses of the struct definition.
For more details we refer to [6, Chapter 4].

Exercise 1.6 Transform the struct in Listing 1.10 to a class. �

1.6.3 Header and Source files
A header file29 is a text file and a common naming convention is that header files end with
.h or .hpp, e.g. average.h. To use the defined function in the header file, the file is included
using the #include30 expression for example #include<average.h>. Note that the header
files if the C++ standard library and the C++ STL do not end with .h or .hpp. Before we
look into the syntax of a header file, some remarks on good and bad practice are given.

Following things are considered as good practice:
• Each header file provides exactly one functionality
• Each header file includes all its dependencies

Following things should not be in header files and be considered as bad practice:

• built-in type definitions at namespace or global scope
• non-inline function definitions
• non-const variable definitions
• aggregate definitions
• unnamed namespaces
• using directives

Listing 1.11 shows an example for a header file for the median function. At the begin-
ning and at the end of each header file, the so-called include guards avoid that functions or
data structures have multiple definitions. In Line 1 we check if the definition UTIL_H is not
defined by using the expression ifndef31 and is closed in Line 15. The compiler checks if



22 Chapter 1. Introduction C++

Listing 1.11: Example for header file.

1 #ifndef UTIL_H // include guard
2 #define UTIL_H
3

4 #include <vector >
5 #include <algorithm >
6

7 // Utilities for the vector container
8 namespace util {
9

10 double average(std::vector <double > vec){
11 return std:: accumulate(vec.begin (), vec.end(), 0.0f)
12 / vec.size();
13 }
14 }
15 #endif

the definition UTIL_H was already seen and only if not, the source code is compiled. To
let the compiler know that the code was compiled the expression define32 in Line 2 is
used. A short form is the #pragma once33. Next, all headers needed in this file are included.

In Line 8 the namespace34 expression is used to avoid naming conflicts and structure
in large projects. Because the function average is within namespace util defnied, the
usage of this function is double res = util::average(vector);. With the namespaces
one can structure the projects as computation, util, and IO for example. So by using
the namespace it is more defined which functionality is provided. It is possible to nest
namespaces to have more structure.

A common folder structure for a project with header files in shown in Listing 1.12. In
the folder includes all header files (*.hpp) and the folder sources all source files (*.cpp) are
collected. Listing 1.13 shows the usage of the average function defined in the file util.h.
However, to compile the file main.cpp file, the compiler needs to know where the util.h is
located. The compilation of the main.cpp is the same as before, but the path to the header
files needs to be specified as -I ../includes, see Listing 1.14.
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Listing 1.12: Folder structure for a project
with header files.

1 sources/
2 main.cpp
3 includes/
4 util.h

Listing 1.13: Example for the main.cpp file
using a header file.

1 #include <util.h>
2

3 int main(void){
4

5 std::vector <double > vec =
{1,2,3};

6

7 double res = util:: average(
vec);

8 }

Listing 1.14: Compilation of the main.cpp file using a header file.

1 g++ -o main -I ../ includes main.cpp

1.6.4 Classes

One important feature provided by the C++ language is the feature class35. Note the
with C we had struct which are very similar to the class. However, one thing of the C++
language is the compatibility to the C language. Meaning that it is possible to compile C
code using a C++ compiler. Therefore, the struct keyword is still available but not really
needed since the keyword class is provided.

Listing 1.15 shows the definition of a class for a three dimensional vector. In Line 1
a class with the name vector3 is defined. All source code within the { }; is in the
scope of the class. Three so-called privacy36 option are available for classes. The first
option is shown in Line 3. The private option means that the double values are only
accessible within the class itself. So these values are hidden and can not be changed
without using any of the public methods below. The methods below Line 7 are declared as
public. Which means the are accessible from outside the class. Let us make an example
for the accessibility by creating Vector3 vector; an object. Since double x is declared
as private, we can not call vector.x; since it is not accessible from outside the class.
However, we can type double len = vec.norm(); since this method is defined as public.
The third option is the friend37 option. The friend option allows a function or another
class access to private members.

A common practice is to have header files and class files to provide the functionality
of a class to other classes. Listing 1.16 shows the header file extracted from the class
definition in Listing 1.15. In the header file the attributes and the member functions of
the class are defined. For example the function double norm(); has no definition in
this file and it is not define how the function is implemented. However, we know that
the class vector3 has this function. The implementation of the function is done in the
corresponding source file, see Listing 1.17. Note that we have to include the corresponding
header file in Line 1. In addition, in a class file, we have to add the name of the class to
all functions, see Line 3, we have to add vector3:: to the constructor and the function in
Line 8. For more details we refer to [6, Chapter 9].
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Listing 1.15: Example for a class definition.

1 class vector3 {
2

3 private:
4

5 double x , y , z;
6

7 public:
8

9 vector3(double x = 0, double y=0, double z=0)
10 : x(x) , y(y) ,z(z) {}
11

12 double norm(){ return std::sqrt(x*x+y*y+z*z);}
13 };

Listing 1.16: Corresponding header file to the class definition in Listing 1.15.

1 class vector3 {
2

3 private:
4

5 double x , y , z;
6

7 public:
8 vector3(double x = 0, double y=0, double z=0);
9

10 double norm();
11 };

For the compilation, we have to first compile the source file using g++ -c vector3.cpp
to compile the class file vector3.cpp. Note since we compile a file without a int main()
function the option -c is needed. The last step is to compile the main.cpp file using g++
main.cpp vector3.o -o main. Note the file vector3.o was generated with the previous
command. For more details about making compilation easier, we refer to Section 1.7.

1.7 Building with CMake

CMake38 is a cross-platform free and open-source software tool for managing the build
process of software using a compiler-independent method. It supports directory hierar-
chies and applications that depend on multiple libraries. It is used in conjunction with
native build environments such as Make, Ninja, Apple’s Xcode, and Microsoft Visual Stu-
dio. It has minimal dependencies, requiring only a C++ compiler on its own build system39.

In the previous two section, we learned how to compile using header files and classes
using the GNU compiler. However, for large code bases, one do not want to compile all files
by hand or write a script to do so. CMake is a neat tool to generate the build recipe for
us. First, we start to look into how to compile a single source file (main.cpp). Therefore,
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Listing 1.17: Corresponding class file to the class definition in Listing 1.15.

1 #include "vector3.h"
2

3 vector3 :: vector2(double x, double y, double z)
4 {
5 x = x; x = y; z = z;
6 }
7

8 double vector3 ::norm(){return std::sqrt(x*x+y*y+z*z)}

we generate a CMakeLists.txt file in the same folder as the source file is located. The
content of the CMakeLists.txt is shown in Listing 1.18. In Line 1 the minimum required
CMake version is specified. This is important because some features are only available in
this version or are deprecated in any older version. In Line 2 the project’s name is defined.
In Line 3 we define that we want to compile the file main.cpp as an executable with the
name out. This would be equivalent to g++ main.cpp -o hello. Listing 1.19 shows how
to compile the main.cpp file using CMake. In line 1 a new folder with the name build is
generated. The best practice is to have a build folder where the code is compiled. So we
can easily delete the folder and have a clean build. In Line 2 we change to the build folder.
In Line 3 we call cmake .. to generate the Makefile. Note that we have to use the two
dots, because the CMakeLists.txt is located one folder above. In Line 4 we call make to
compile the code and in Line 5 we execute the compiled program.

For a project with class and header files, a common folder structure is shown in
Listing 1.21. A common practice is to have a folder include for the header files, a folder
src for the source files, and the CMakeLists.txt. Listing 1.21 shows the corresponding
CMakeLists.txt file. In Line 4 the include directory is added to the project which means
-I ../includes is added as an argument to the compiler. In Line 6 the source files to
compile are added manually by specifying their file names. This is feasible for small projects,
however, for large amount of files it is too much work. Line 10 shows are more handy way
to add all source code files in the folder src.The last step is to add all the sources to the
executable in Line 12. Note that we only covered the minimal basics of CMake. For more
details, we refer to [23].

Listing 1.18: Content of the CMakeLists.txt.

1 cmake_minimum_required(
VERSION 3.10.1)

2 project(hello_world)
3 add_executable(hello main.

cpp)

Listing 1.19: Build instructions for CMake.

1 mkdir build
2 cd build
3 cmake ..
4 make
5 ./hello
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Listing 1.20: Structure of a CMake project.

1 .
2 |-- CMakeLists.txt
3 |-- build
4 |-- include
5 | \-- vector2.h
6 \-- src
7 |-- vector2.cpp
8 \-- main.cpp
9 3 directories , 4 files

Listing 1.21: Build instructions for CMake.

1 project(directory_test)
2

3 #Include headers
4 include_directories(include

)
5

6 #Adding all sources
7 #set(SOURCES src/main.cpp

src/vector2.cpp)
8

9 #Adding sources easier
10 file(GLOB SOURCES "src /*.

cpp")
11

12 add_executable(test ${
SOURCES })

1.8 Generic programming
In some cases, we need to write the same function for different data types, e.g. double and
float, see Listing 1.22. We would need to write the same function for all data types. Thus,
we will produce the same computation multiple time and have too much redundant code.If
there is an error in the computation, we would have to correct it for all of the functions.
Function templates40 are provided by the C++ language. Listing 1.22 shows starting at
Line 11 how to combine the previous two function into one. In Line 11 the expression
typename indicates that we define a function template and within the parentheses the
typename T is defined which is a placeholder for the explicit data type. For the remaining
function definition everything keeps the same and only the specific data type, e.g. double
and float, is replaced by T. Now, the function is used as add<double> or add<float> or
add<int> for the various data types without explicit implementing all of them. This is a
neat feature to reduce the amount of code.

The same is possible for struct and classes by adding template<typename T>41

above the definition and using the T instead of double as in Listing 1.10. Now, the function
is used as struct vector <double> v; or struct vector<float> v; or struct vector
<int> v; for the various data types without explicit implementing all of them. For the
function norm() there is no need to use template<typename T> again and the return
type double is replaced by T. Fore more details, we refer to [53]. For further watching,
we recommend the C++ Lecture 2 - Template Programming 242 and C++ Lecture 4 -
Template Meta Programming43.

Exercise 1.7 Use the struct in Listing 1.10 and make it a generic one by adding the template
<typename T> and replace all double by T. �

1.9 Lambda function
In Section 1.6.1 function expression was introduced as int compute(int a, int b);
. Here, the function has a name compute and this name is used to call the function.
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Listing 1.22: Example for the usage function templates.

1 // Definition of multiple functions
2 double add(double a, double b) {
3 return a + b;
4 }
5

6 float add(float a, float b) {
7 return a + b;
8 }
9

10 // Function template
11 template <typename T>
12 T add(T a, Tb){
13 return a+b;
14 }

However, in some cases it can be neat to use a function exactly once, for example in the
STL Algorithms, see Section 3.3. To use a function only one time the so-called lambda
expression or lambda function44 is shown in Listing 1.23. Within the [. . .] the capture
clause of the parameters within the (. . .) are defined. Ans as for the function the code of the
function is defined within {. . .}. Note that the -> return-type, e.g. -> int, is somehow
an optimal parameter and in most cases this parameter is evaluated by the compiler and
only in few special cases the return type needs to be defined. Following capture clauses45

are available:
• [&] : capture all external variable by reference
• [=] : capture all external variable by value
• [a, &b] : capture a by value and b by reference

For more details about the capture classes, we refer to the next section.

Listing 1.24 sketches some practical example how to transform a function to a lambda
expression. From Line 2–4 defines the function to print the element of the vector piece-wise
to the standard output stream. In Line 5 the short form of a for loop is used to loop
over all elements of the vector piece-wise. Note that i is not the index and it is the
value of the vector at position std::for_each is handling. Since we use the function
void print(int i) only once, a short form of this function is used in Line 8.

Exercise 1.8 Try to understand the transformation of the function void print(int i) to the
corresponding lambda function. �

Listing 1.24 also shows some example to find the first number greater than 4 in a
vector using the std::find_if46. Many more algorithms are available in the #include <
algorithm>47.

1.10 Pointers

Imagine following conversation:

Person A: Would you teach a toddler how to eat with a butcher’s knife?
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Listing 1.23: Example for lambda functions.

1 [ capture clause ] (parameters) -> return -type
2 {
3 // definition of method
4 }

Listing 1.24: Practical example for a lambda function.

1 // Print the values of the vector using a function
2 void print(int i){
3 std::cout << i << std::endl;
4 }
5 std:: for_each(v.begin (), v.end(), print);
6

7 // Print the values of the vector using a function
8 std:: for_each(v.begin (),v.end(),
9 []( int i){std::cout << i << std::endl ;})

10

11 // Find the first number greater than 4 in a vector
12 std::vector <int >:: iterator p = std:: find_if(
13 v.begin(),
14 v.end(),
15 []( int i)
16 {
17 return i > 4;
18 });
19 std::cout << "First␣number␣greater␣than␣4␣is␣:␣" << *p <<

endl;
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Listing 1.25: Introduction to pointers to objects.

1 // Initialize
2 int x = 42;
3

4 // Get the pointer to the object x
5 int* p = &x;
6

7 // Get the object the pointer is pointing to
8 int tmp = *p;
9

10 // Using pointers to manipulate objects
11 std::cout << x << std::endl;
12 *p = 43;
13 std::cout << x << std::endl;

Person B: No!

Person A: So stop mentioning pointers to people barely starting with C++.

Therefore, the book does not talk much about pointers, because in most cases, you do
not need pointers to implement mathematical algorithms. If you need them, you should
carefully check your implementation and see if you can avoid them. However, the introduce
the basics so you know about pointers and can use them if you really need them.

A pointer p is a value that represents the address of an object. Every object x has
a distinct unique address to a part of the computer’s memory. Listing 1.25 gives some
example. In Line 2 the object int x is generated in the computer’s memory and the value
42 is stored. In Line 5 the address to the memory where the object x is stored is store in
int* p by using the so–called & address operator. In Line 8 we get the value 42 stored
at the address p by using the so-called deference operator. In Line 11 the value 42 of the
object x is printed. In Line 12 we use the pointer p to the object x to set a new value 43.
In Line 13, we print the object x again and we will see the new value 43 without accessing
the object x directly.

In the first example, we used a pointer to a single object. In the second example, we
will use a pointer to an array of objects, see Listing 1.26. In Line 1 a pointer to the array
is obtained. Using the dereference operator on the pointer gives us access to the first
element of the array, see Line 2. With the so-called pointer arithmetic we can access the
second and third element of the error by adding one or two the pointer before we use the
dereference operator. In Line 13 we compute the distance between two pointers which is
the length of the array in this case. Note that ptrdiff_t48 is a signed type because the
distance can be negative.

In the last example, we look into pointers to function, the so-called function pointers.
In Listing 1.27 shows how to generate function pointers to the function square. In Line 7
the first possibility to generate a function pointer to the square function. The first int
stands for the return type of the function and the second int for the function’s argument.
In Line 2 the left-hand side is the same, but on the right-hand side we use the address
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Listing 1.26: Introduction to pointers to range of objects.

1 int* array = new int [3];
2 *array = 1;
3 *(array + 1) = 2;
4 *(array + 2) = 3;
5

6 // Accessing the first element
7 int first = *array;
8

9 // Accessing the second element
10 int second = *(array + 1);
11

12 // Getting the distance between two pointers
13 ptrdiff_t dist = array+2 - array;

Listing 1.27: Example for function pointers.

1 int square(int a)
2 {
3 return a * a;
4 }
5

6 // Generating a function pointer
7 int (*fp)(int) = square; //We need the (int) for
8 int (*fp2)(int) = &square; // the return type
9

10 // Calling the function using its pointer
11 std::cout << (*fp)(5);
12 std::cout << fp2 (5);

operator. In Lines 112–12 the function is called using its function pointer. Note that each
of two lines to get the pointer or call the function are equivalent.

1.10.1 Memory management
From the Spider-Man comics and the movies, we all know the sentence

With great power there must also come great responsibility

and this can be referenced for the usage of pointers as well. In C++ we have two kind of
memory management:

1. Automatic memory management
This is what happens using the C++ standard library and the C++ STL. The system
is allocation the memory for use, e.g. if we generate some array double int[8] or
one of the containers. If the array goes out of scope which means it is not used
anymore, the system deallocates the used memory.

2. Dynamic memory management
If we use a pointer, the user has to allocate and clear the memory for each generated
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Listing 1.28: Example for dynamic memory management.

1 // Allocate the memory for one single integer value
2 int* p = new int (42);
3

4 // Deallocate the memory
5 delete p;
6

7 // Allocate the memory for five integer values
8 int* p = new int [5];
9

10 // Deallocate the memory
11 delete [] p;

object. The programmer allocates the memory with the new49 keyword and deallocates
the memory with the the delete50 keyword.

Listing 1.28 shows some examples for dynamic memory management. In Line 2 the memory
for one single integer value is allocated. In Line 5 the memory is deallocated which means
the memory at this address is free again. In Line 8 the memory for five integer values is
allocated. Note that here we have to add [] to the delete keyword.

1.11 Moving data
In some cases, if we pass a value to some function, we like to avoid to copy the data and
instead we like to std::move51 the data. Let us look into the example in Listing 1.29
to explain what we mean by moving a value. In Line 4 we add the string hello to the
vector using the push_back method. However, by passing the string hello a copy of the
string is passed to the function. Depending on the object size, the copying takes some
time. However, if we print the content of the string hello by using the copy, the value of
the string will be "Hello". If, we want to avoid the copying, one can use the std::move
function in Line 9. However, if we print the content of the sting hello, the empty string
will be printed. This happens since we moved the data (in that case the content "Hello")
to the std::vector<std::string>. So, if we print the content of v[i], we will see again
the content "Hello" again, since we moved the content. Note that you have to be aware
of undefined states after moving. For example v.clear() is a valid state since there is no
precondition. However, v.back() could result in a undefined behavior, since the size of
the string is zero.

1.11.1 Smart pointer
The so-called smart pointers are defined in the header #include <memory>52. In the
previous section, we looked at so-called raw pointers and these should be used only in small
code blocks of limited scope or where performance is a major issue. Using a raw pointer
you are responsible to manage the memory and deallocate the memory if the object is
not needed anymore. Using a smart pointer there is no need to call the delete explicitly.
The first smart pointer is the std::unique_ptr53, see Listing 1.30. The unique pointer
points to exactly one object in the memory and no other pointer can point to this object.
In Line 1 we initialize a smart unique pointer containing a array double [] by using
std::unique_ptr<double[]>a. We use the new operator to allocate a array of size two.
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Listing 1.29: Example for the usage of std::move to move data.

1 std:: string hello = "Hello";
2 std::vector <std::string >v;
3

4 // Add the string hello to the end of the vector
5 v.push_back(hello);
6 std::cout << "After␣copying␣the␣string ,␣its␣content␣is:␣" <<

hello << std::endl;
7

8 //Move the data and avoid the copying
9 v.push_back(std::move(hello));

10 std::cout << "After␣moving␣the␣string ,␣its␣content␣is:␣" <<
hello << std::endl;

11

12 // Printing the moved content
13 std::cout << "After␣moving␣the␣string ,␣its␣content␣is:␣" << v

[1] << std::endl;

Listing 1.30: Using the smart unique pointer.

1 // Generate a unique pointer of a double array
2 std::unique_ptr <double[]>a(new double [2]);
3

4 // Initialize the values
5 a[0] = 1;
6 a[1] = 2;
7

8 // Generate a copy of the array a
9 //std::unique_ptr <double[]>b(a);

10

11 // Generate a copy of the array a
12 std::unique_ptr <double[]>b(std::move(a));

For more details about the new keyword, we refer to Section 1.10.1. In the Lines 5–6 the
values of the array are initialized. Note that the Line+9 is commented out on purpose,
since this line of code will not compile. Since we use a std::unique_ptr for the array a,
we can not use a second smart pointer b pointing to a. However, moving the pointer a to
the unique pointer b will work, since we move the control from a to b. Fore more details
about std:move, we refer to Section 1.11.

The second smart pointer is the so–called share pointer std::shared_ptr54. The
shared pointer allows that pointers can point to the same object and a reference counter
is used. Listing 1.31 shows the usage of smart pointers. In Line 2 a smart pointer of a
double array is generated and we allocate a array of size two. Now, since we use a shared
pointer the pointer a can be passed to the new share pointer b, since multiple pointer can
point to the same object. In addition, we can use the function use_count() to check the
pointers pointing to the object the pointer a is pointing to.
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Listing 1.31: Using the smart unique pointer.

1 // Generate a unique pointer of a double array
2 std::shared_ptr <double[]>a(new double [2]);
3

4 // Initialize the values
5 a[0] = 1;
6 a[1] = 2;
7

8 // Generate a copy of the array a
9 //std::unique_ptr <double[]>b(a);

10

11 std::cout << a.use_count) << std::endl;
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2. The C standard library

The ANSI C standard55 is the specification for the C standard library (libc). The C
standard library provides following functionality

• Handling set of characters in the #include <cstring> header,
• handling times and dates in the #include <ctime> header,
• Support of complex numbers in the #include <ccomplex>,
• Mathematical functions in the #include <cmath> header,
• Limits of integer types in the #include <climits> header,

and many more features. However, these are the features we will use most in this course.
For more details, we refer to [54].

2.1 Strings
The STL provides the class string56 to store sequences of characters. For the usage of this
class the header #include <string> has to be added to the cpp file to make std::string
available. Listing 2.1 shows how to use the string class to write a set of characters to stan-
dard output stream57 std::cout and read them from standard input stream58 std::cin.
To use these functionality the #include <iostream> header is needed.

In Line 7 the set of characters "Please␣enter␣your␣name:␣" is written to the standard
output stream using the operator <<. In Line 9 a string object with the identifier name
is declared. All variables have a name name and a type std::string. Since the variable
is declared but not initialized yet, the variable is empty or a null string. The assignment
operator = is used to initialize the variable with a set of characters std::string name =
"Mike". In Line 10 the variable is initialized with the content provided by the standard
input stream std::cin and the >> operator. In Line 12 the content of the variable is
written to the standard output stream. Note that you can concatenate strings using the >>
operator multiple times. To generate a line break the statement std::endl is used. Note
that we only handled the basis features here, since these are necessary for the purpose of
this course. For more details we refer to [6, Chapter 1].
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Listing 2.1: Example reading and writing strings.

1 // Read person ’s name and greet the person
2 #include <iostream >
3 #include <string >
4

5 int main()
6 {
7 std::cout << "Please␣enter␣your␣name:␣";
8 // Read the name
9 std:: string name;

10 std::cin >> name;
11 // Writing the name
12 std::cout << "Hi ,␣" << name << "!" << std::endl;
13 return 0;
14 }

2.2 Random number generation

For some applications, e.g. Monte Carlo methods, see Chapter 10, random numbers are
essential. The trivial way to generate a integer random number in the range of zero and
RAND_MAX is to use std::rand59 provided by the #include <cstdlib> header. Listing 2.2
shows a small example to generate a random number. Note that one has to provide a seed
to the random number generator to get a different random numbers each time the program
is executed. One way to do so, is to use the current time std::time(0)60 provided by
the #include <ctime> header. Line 10 shows how to use the current time passed as
an argument std::srand(std::time(0)) as a seed for the random number generator.
Line 12 shows how to get one random number. Note that the seed has to be set only once,
but always before any random number is drawn.

For more advanced usage of random number generators the #include<random> header
is provided. More advanced means that not only integer random number can be drawn
and range can be provided. Listing 2.3 shows how to generate uniform distributed
random numbers. Line 8 generates a random number device std::random_device rd
61. Next, the engine for the random number generation is chosen. In this case the
mersenne_twister_engine [70] is used by providing the random device as an argument
std::mt19937 gen(rd())62. Next the uniform distribution has to be specified by std::
uniform_int_distribution for integer values and std::uniform_real_distribution
for floating point numbers. In Line 12 the interval from 1 to 6 for integer numbers and in
Line 14 for double numbers is specified. Line 15 shows how to get a random number by
using the distribution by passing the engine as an argument dis(gen).

2.3 Numerical limits

Since the limits of the numerical data types depend on the various things, the #include
<limits> header63 is available to access this information. For the integer data types,

the function std::numeric_limits<unsigned int>::min() is provided to receive the
smallest finite value and the function std::numeric_limits<unsigned int>::max() the
largest finite value of the unsigned int data type.
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Listing 2.2: Example using the trivial random number generator.

1 // Include for using rand
2 #include <cstdlib >
3 #include <iostream >
4 // Include for getting the current time
5 #include <ctime >
6

7 int main()
8 {
9 // Use the current time as random seed

10 std::srand(std::time (0));
11 // Get one random number
12 int random_variable = std::rand();
13 std::cout
14 << "Random␣value␣on␣[0␣" << RAND_MAX << "]:␣"
15 << random_variable << ’\n’;
16 }

Listing 2.3: Example using the trivial random number generator.

1 // Include for advanced random numbers
2 #include <random >
3 #include <iostream >
4

5 int main()
6 {
7 // Generate a random number device
8 std:: random_device rd;
9 //Set the standard mersenne_twister_engine

10 std:: mt19937 gen(rd());
11 // Specify the interval [1,6]
12 std:: uniform_int_distribution <size_t > dis(1, 6);
13 // Specifiy the interval [1.0 ,6.0]
14 std:: uniform_real_distribution <double > disd (1,6);
15 std::cout << dis(gen) << "␣" << disd(gen) << ’\n’;
16 }
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Listing 2.4: Example accessing the numerical limits of floating point types.

1 #include <limits >
2 #include <iostream >
3

4 int main()
5 {
6 std::cout << "type\tround ()\teps\tmin()\t\tmax()\n";
7 std::cout << "double\t"
8 << std:: numeric_limits <double >:: round_error () <<’\t’
9 << std:: numeric_limits <double >:: epsilon () <<’\t’

10 << std:: numeric_limits <double >:: min() <<’\t’
11 << std:: numeric_limits <double >:: max() <<’\n’;
12 }

For floating point numbers, two additional values are accessible, see Listing 2.4. In Line 8
the rounding error std::numeric_limits<double>::round_error()64 which returns the
maximum rounding error of the given floating-point type is shown. In Line 9 the value
epsilon std::numeric_limits<double>::epsilon()65 which is the difference between 1.0
and the next representable value of the given floating-point type is obtained. Fore more
details about the IEEE 474 standard how floating point numbers are represented in the
computer we refer to [35, 50]. The next two lines of code show how to access the minimal
and maximal value.

2.4 Reading and writing files

For numerical simulations, it is essential to read files, e.g. configuration files, and store their
values or write the simulation results to permanent storage. First, we look into how to
read the content of a file line by line. To do so, the ifstream66 provided by the #include
<fstream>67 header. Listing 2.5 shows how to read the file’s content "example.txt" line

by line. In Line 7 a ifstream with the name myfile is declared. With the parentheses
its constructor is called and the parameter is the file name of the file we want to open.
Note that we assume that the file is located next to the cpp file. In Line 8 we check if the
file could be opened successful. In that case the function is_open()68 will return true.
In line 10 the function getline69 is called to access the each line of the file. The first
argument is the ifstream and the second argument is a std::string where the line of
the file is stored. Each time the function is called there is new content in the argument
line. If there is no next line. the function returns false and the while loop stops. In
Line 16 the ifstream is closed by calling the close()70 function.

Exercise 2.1 Instead of printing the file content to the standard output device, store each line of
the file in a std::vector<string>. �

Second, we look into how to write the text "Writing␣this␣to␣a␣file" into the file
"example.txt", see Listing 2.6. In Line 6 the std::ofstream71 is declared. In Line 7 the
function open()72 is called. The first argument is the file name of the file to create. The
second argument is the file mode std::ios::out73. In Line 8 the operator << is used to
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Listing 2.5: Example for reading the content of file "example.txt" line by line.

1 #include <iostream >
2 #include <fstream >
3 #include <string >
4

5 int main () {
6 std:: string line;
7 std:: ifstream myfile ("example.txt");
8 if (myfile.is_open ())
9 {

10 while ( getline (myfile ,line) )
11 {
12 std::cout << line << ’\n’;
13 }
14 myfile.close ();
15 }
16 return 0;
17 }

Listing 2.6: Example for writing to the file "example.txt".

1 // basic file operations
2 #include <iostream >
3 #include <fstream >
4

5 int main () {
6 std:: ofstream myfile;
7 myfile.open ("example.txt", std::ios::out);
8 myfile << "Writing␣this␣to␣a␣file.\n";
9 myfile.close ();

10 return 0;
11 }

write the string to the file. By using "n" we indicate a line break and all content after will
be in a new line of the file. In Line 9 the file is closed by calling the close()74 method.

Exercise 2.2 Instead writing one string to the file, write all string in a std::vector<string>
to the file with each string in a new line. �

.
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3. The C++ Standard Template Library (STL)

3.1 Overview of the STL
Figure 3.1 shows the four components of the C++ Standard Template Library (STL).
The main focus in this course is on the algorithm component, container component, and
iterators component. The functions component provides the so–called Functors75. A
functor is an object, which is treated a function or a function pointer. The component
iterators76 provides six iterators for working upon a sequence of values, e.g. containers.
The usage of iterators will be discussed in Section 3.2.4. For the Algorithms component77

following algorithm classes:
• Sorting78 - Ordering elements in a container with respect to their order,
• Searching79 - Searching for elements in a sorted array, and
• STL algorithms - Provides algorithms, like finding the largest element (max80) in an
container or compute the sum81 of all elements;

will be reviewed. All of these algorithm classes will be showcased on the container std::
vector in Section 3.2. For more details on the STL we refer to [75, 95], but remember
learning C++ is like learning a new sportive activity, practicing (writing code) is essential
to improve your skills. For further watching, we recommend the C++ Lecture 1 - The
Standard Template Library82.

Most important take away of this section is:
• Never implement your own algorithm or container, if you can find it within the STL.
• If you can not find it within the STL, think if you really need this feature.

3.2 Containers
Before we look into the containers, we start with an example to showcase the need of
containers. Let us assume we want to compute the average

a =
1
n

n

∑
i=1

i (3.1)



42 Chapter 3. The C++ Standard Template Library (STL)

STL

Algorithms

Sorting

Searching

STL
algorithms

Array
algoritms

Partion
operaitons

Containers

Sequence
containers

std::
vector

std::
list

std::
array

Container
adaptors

Associative
containers

Unordered
associative
containers

FunctionsIterators

Figure 3.1: Overview of the C++ Standard Template Library (STL): Algorithms, Containers, Itera-
tors, and Functions. This course will mainly focus on the Algorithms and Container components.

of the number from one to n. Listing 3.1 sketches how to compute the average using the
ingredients of the previous chapter. Only one new feature std::setprecision83 is a new
feature provided by #include <iomanip> header and you should be able to understand
this code. If you have any issues, we highly recommend to go back to the previous chap-
ter and read one more time the section about loop statements, see Section 1.4.1. With
std::setprecision(3) it is specified that only three digits of the following floating point
number are printed. For example if one wants to print const long double pi = std::
acos(-1.L); and uses std::setprecision(3) only 3.14 is printed. Thus, depending on
the application the accuracy can be varied.

In this example multiple values are read from the standard input using while (std::
cin >> x) in Line 9. The while statement reads a new value from the standard input
device, stores it in the variable x, until the users types \n, which corresponds to a line break,
since the loop condition is false. However, if we want to compute the median of a list of
elements, we need to store the elements, process them, and print the average. To store these
elements, we will look into the std::vector container and the #include<algorithm>
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Listing 3.1: Computation of the average of the numbers from one to n.

1 #include <iostream >
2 #include <iomanip >
3

4 int main()
5 {
6 double sum = 0;
7 size_t count = 0;
8 double x = 0;
9 while (std::cin >> x)

10 {
11 sum += x;
12 ++count;
13 }
14 std::cout << "Average:␣"
15 << std:: setprecision (3)
16 << sum / count << std::endl;
17 }

header. In Section 3.3 an example to compute the average is provided, since we have all
the needed ingredients studied. For more details we refer to [6, Chapter 3].

3.2.1 Vector
The container std::vector represents an object to store an arbitrary amount of the same
data types. From the mathematical point of view the std::vector is comparable to a
vector

v = {vi | i = 1, . . . ,n} with v[i] = vi and |v|= n. (3.2)

Note in C++ the elements in a vector start with index zero and the index of the last
element is n−1 with a vector length of n. To initialize an empty vector with the name
values the expression std::vector<double> values; is used. Between the parenthesis
the data type of all elements of the vector is specified. In this case only double values
can be stored in the vector. In this case the length of the vector values.size() will
return zero and values.empty() will return true since the vector is empty with the
meaning that there are not elements stored. In addition, a vector can be filled with
values during its definition using std::vector<double> v = 1, 2.5;. In this case the
length of the vector values.size() will return two and values.empty() will return false.

Let us write the computation of the average again using the std::vector. Listing 3.2
shows the new implantation of the computation of the average (Listing 3.1). In Line 7
the std::vector with the name values for storing double values is declared. In Line 11
with values.push_backx the value of x is inserted at the end of the vector. To replace
the third element of the vector by the value 1.5 the expression values[3]=1.4 is used. To
replace the last element with zero the expression values[values.size()-1]=0 is used.
To access the elements on the i-th index the expression values[i] is used. The first
element is accessed using values.first() and the last element using values.last().
More details about iterators are discussed in Section 3.2.4. The last element is deleted by
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Listing 3.2: Computation of the average of the numbers from one to n using containers.

1 #include <iostream >
2 #include <vector >
3 #include <numeric >
4

5 int main()
6 {
7 std::vector <double > values;
8 double x;
9 while (std::cin >> x)

10 {
11 values.push_back(x);
12 }
13 double sum =
14 std:: accumulate(values.begin (), values.end(), 0.0f);
15 std::cout << "Average:␣"
16 << sum / values.size() << std::endl;
17 }

using values.pop_back() and the i-th element by values.erase(values.start()+i.

In Line 14 the sum of all elements in the vector is computed by using std::accumulate
from the Algorithms component. The first argument values.begin() and the second
argument values.end() defines the range of the vector. Here, it is the full vector, but for
example to keep out the first element of sum, one can use values.begin()+1. The third
argument is the initial value of the sum. More details about the Algorithms will be studied
in Section 3.3.

Compared to other containers, e.g. std::list, the std::vector is designed for
1. Are sufficient for small amount of elements. A good estimate is around 7000 elements,
2. Are optimized to access elements arbitrary, and
3. Performs well adding one element by the time to the end of the vector.

For example the complexity for inserting or removing an element in a vector is O(n2) and
for the container std::list the complexity is O(n) [61, 71].

3.2.2 List

Depending on the use case next to the std::vector container, the std::list container
is available. The std::list container is provided by the #include <list> header. The
usage of this container is similar to the std::vector and one can just replace std::vector
by std::list in the code. Therefore, we will not provide any source code example here,
since you can just look on them in the previous section. Compared to other containers, e.g.
std::vector, the std::list is designed for

1. Are slower for small amount of elements, and
2. Are optimized to insert and delete elements anywhere.

For example the complexity for inserting or removing an element in a vector is O(n2) and
for the container std::list the complexity is O(n) [61, 71].
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Listing 3.3: Usage of arrays using the language keyword.

1 // Define the length
2 size_t size = 6;
3

4 // Generate a double array of size 6
5 double array[size];
6

7 // Initializing
8 double array = {1,2,3,4,5};
9

10 // Access all elements
11 for(size_t i = 0; i < size ; i++){
12 array[i] = i*2;
13 std::cout << array[i] << std::endl;
14 }
15

16 // Access the first element
17 *array = 42;
18 std::cout << array [0] << std::endl;

3.2.3 Array

Another container is the std::array and it is provided by the #include <array> header84.
Note that the array keyword is also available as a language feature85. The major difference
is that the number of elements must be known at compile time and can not grow or
shrink dynamically. Listing 3.3 shows the usage of the array as the language feature. In
Line 2 the size of the array is defined using size_t type since the size of the array is
always positive. In Line 5 the array with the name array is defined using [size] to
specify its size and we use the keyword double to specify the type of the elements. In
this case we have a array of five double values which are not initialized. In Line 8 the
values of the array are initialized from one to five using {1,2,3,4,5}. Lines 11–14 show
how use a for loop to overwrite the values assigned in Line 8 and print them to the
standard output stream. In Line 17 we use the dereference operator * to access the first
element of the array which is equivalent to array[0] to put the value 42 at the first position.

After looking into the usage of the array provided by as language feature, we look into
the container version. The basic concepts are similar, but the container version can be used
within the algorithms of the STL library which is sometimes a neat feature. Listing 3.4
shows the usage of the container version. In Line 7 the array is initialized very similar
as for the language version, but since the std::array is provided by the C++ Standard
Template Library the template specialization <int,3> is needed, where the first argument
defines the data type and the second one the length of the array. In Line 11 the array is
sorted using the sort method which we used to sort a std::vector or std::list. Note
that is is only possible with the container version. Another nice feature is the range-based
for loop in Lines 14–15.
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Listing 3.4: Usage of arrays as containers.

1 #include <algorithm >
2 #include <array >
3

4 int main()
5 {
6

7 // generate and initialize the array
8 std::array <int , 3> array = {1, 2, 3};
9

10 // Sort the array
11 std::sort(array.begin (), array.end());
12

13 // Use the range -based loop to print the elements
14 for(const auto& s: array)
15 std::cout << s << ’␣’;
16

17 return 0;
18 }

3.2.4 Iterators

Iterators provided by the \#include<iterator>86 header are pointing to some specific
element, e.g. std::array or std::vector, and provides some fast way to iterator over
all elements in the range. As the example, we use the a vector std::vector<int> v =
{1,2,3,4,5}; and to access the first element v.begin()87 and to access the last element
v.end()88 is used. For the algorithms in the next Section, we use these for example to sort
std::sort(v.begin(),s.end(),std::greater<int>()89 from the largest to the lowest
number. We can also use v.next()90 to get the next element and v.prev()91 to get the
previous element.

Using iterators, we can do advanced iterating over vectors, see Listing 3.5. In Line 9
a constant iterator std::vector<int>::const_iter and assign the first element of the
vector to it. For the for loop in Section 1.4.1 this would be equivalent to loop variable
size_t i = 0. In Line 11 we use the not equal operator iter != values.end() as the
condition statement. The equivalent for the for loop would be i < vector.size(). In 12
the manipulation statement ++iter is used and for the for loop we would use i++.To get
the content of the vector, we use the deference operator *iter. Note for the for loop we
would use values[i].

With the iterators erasing elements gets easier, since we can use the expression values
.erase(iter)92 instead of vlaues.erase(values.begin()+i). Note that the erase
function returns the iterator of the element the iterator is pointing to after the deletion
iter = vlaues.erase(iter) which is useful for some algorithms.
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Listing 3.5: Printing a vector using iterators.

1 #include <iostream >
2 #include <vector >
3 #include <iterator >
4

5 int main()
6 {
7 std::vector <int > values = {1,2,3,4,5};
8 for(
9 std::vector <int >:: const_iterator iter =

10 values.begin ();
11 iter != values.end();
12 ++iter
13 )
14 {
15 std::cout << *iter << std::endl;
16 }
17

18 }

3.3 Algorithms

In this section some of the algorithms provided by the STL are studied. For a complete
list of all available algorithms we refer to93. The median for a sorted list of numbers
v = {vi|i = 1, . . . ,n} is given as

median =

{
v[n

2 ] if n is even
1
2

(
v[n

2 ]+ v[n
2 −1]

)
else

. (3.3)

To compute the median of a std::vector, we have to sort the vector first. The STL
provides the std::sort algorithm in the #include <algorithm> header. Listings 3.6
shows the computation of the median using the STL. In Line 6 a new feature typedef94

to shorten long lines of codes is introduced. In that case we do not want to type each time
std::vector<double>:: size_type to get the data type of the vector size and want to
use vec_sz instead. Each time the compiler recognizes vec_sz it will replace it by the
long form. This is a neat feature to make the code more readable.

Line 13 shows how to use sort the values stored in the std::vector in Line 9–12. one
has to provide the range of the vector to the sort function. Note that the current values in
the vector will be replaced by the sorted ones. To keep the unsorted valued, a copy of the
vector can be obtained by the std::copy95 algorithm.

Another example is to compute the sum of all elements of a std::vector using a for
loop or using the std::accumulate96 provided by the #include <numerics>97 header.
Listing 3.7 shows how to compute the sum and some neat algorithms. To fill a vector
with the values one to ten, the function std::ito98 in Line 8 is used instead of writing
a for loop. In Line 12–13 the sum is computed using the loop and in Line 17 the sum
computed using the STL. One can easily see that the code in Line 17 is shorter and easier
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Listing 3.6: Computation of the median using the sorting algorithm provided by the STL.

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 int main(){
6 typedef std::vector <double >:: size_type vec_sz;
7 std::vector <double > values;
8 double x;
9 while (std::cin >> x)

10 {
11 values.push_back(x);
12 }
13 std::sort(values.begin (),values.end());
14 vec_sz mid = values.size() / 2;
15 double median = values.size() % 2 == 0 ?
16 0.5*( values[mid]+ values[mid -1]) : values[mid];
17 std::cout << "Median:␣"
18 << median << std::endl;
19 }

to understand. Therefore, it is recommended to use the STL were possible. In line 25–29
the values of the vector are printed to the standard output stream using a for loop. In
Line 32 instead of using the for loop, the expression std::for_each99 provided by the
#include <algorithm> header is used. This lien of code iterates over all elements in the
vector and call the function print and passes each element to the function. Note that the
function can have only one argument and its type has to match the type of the vector.

There are many more algorithms in the STL as shown here. These algorithms will be
introduced in the reaming parts of the book, especially with the numerical examples in
Chapter V. We recommend to have a look in the algorithms to write more efficient and
less confusing code. For more details we refer to [6, Chapter 6].

3.4 Parallel Algorithms
Since the C++17 standard the parallel algorithm are specified. Currently, only the GNU
compiler collection 9 and the MS Visual Studio compiler 19.14100 implement this as an
experimental feature. 69 of the algorithms from the #include <algorithm>, #include
<numeric>, and #include <memory> are available101. Note that this is an experimental
feature and following compiler flags have to be added -std=c++1z to use the experimental
features and -lttb to use the Threading Building Blocks (TTB) library102 for the parallel
execution. Listing 3.8 shows one example how to compute the sum over a vector in
sequential and parallel.

In Line 4 the #include <chrono> header103 which is needed for time measurements. In
Line 14 a timer t1 is generated by using the expression std::chrono::high_resolution_clock
::now();104. After this line of code is executed the current time is stored in the timer
t1. In Line 16 after the line of code, we wanted to measure the execution time, a second
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Listing 3.7: Example for a function definition to compute the maximum of two numbers.

1 #include <vector >
2 #include <iostream >
3 #include <numerics >
4 #include <algorithm >
5

6 void print(double v){
7 std::cout << v << "␣";
8 }
9

10 int main(){
11

12 std::vector <double > values (10);
13 std::iota(values.begin (), values.end(), 1);
14

15 // Compute the sum using a for loop
16 double sum = 0;
17 for( auto& v : values)
18 sum += v;
19 std::cout << "Sum:" << sum << std::endl;
20

21 // Compute the sum using STL
22 sum = std:: accumulate (( values.begin (), values.end() ,0);
23 std::cout << "Sum:" << sum << std::endl;
24

25 // Check the result by printing the vector using a for loop
26 for( size_t i = 0 ; i < values.size(); i++)
27 std::cout << values[i] << "␣";
28 std::cout << std::endl;
29

30 }
31

32 // Check the result by printing the vector using STL
33 std:: for_each(values.begin (), values.end(), print);
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timer t2 is generated with the current time after Line 15 was executed. In Line 17 the
difference between the two timers is computed by the expression std::chrono::duration
<double, std::milli> ms = t2 - t1;105. Wit the second argument the unit is specified
and in that case std::milli106 return the time difference in milliseconds. In Line 18 the
expression std::fixed107 restricts the number of decimal points printed.

Note that in Line 15 the expression std::accumulate is used to compute the sum of
the elements of vector nums in a sequential manner. Meaning only one element is added
up each time. For a large amount of elements this can be very time consuming. To make
the computation of the sum more efficient, the parallel version of the algorithm can be
used. Note that in the parallel algorithms the name of the algorithm is std::reduce
108 and not std::accumulate. For the parallel algorithms the function parameters are
identical, however, there is one additional parameter, the so-called execution policy, which
is placed in front to the function parameters. In our case the std::execution::par109

execution policy. With this execution policy the code is executed using all threads of
the hardware. Currently, the feature to specify the amount of threads is currently not
implemented. To execute the same lien of code in a sequential manner the execution
policy std::execution::seq is used. The header #include <execution> is necessary.
Following execution policies are available:

• std::execution::seq
The algorithm is executed sequential, like std::accumulate in the previous example
and using only once thread.

• std::execution::par
The algorithm is executed in parallel and used multiple threads.

• std::execution::par_unseq
The algorithm is executed in parallel and vectorization is used.

Fore more details, we refer to the talk “The C++17 Parallel Algorithms Library and
Beyond”110 at CppCon 2016. Listing 3.9 shows how to compile the code using the
experimental feature and some time measurements.
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Listing 3.8: Computation of the median using the sorting algorithm provided by the STL.

1 #include <vector >
2 #include <algorithm >
3 #include <iostream >
4 #include <chrono >
5 #include <execution >
6 #include <numeric >
7

8 int main(){
9

10

11 std::vector <double > nums (900000000 ,1);
12

13 {
14 auto t1 = std:: chrono :: high_resolution_clock ::now();
15 auto result = std:: accumulate(nums.begin (), nums.end(),

0.0);
16 auto t2 = std:: chrono :: high_resolution_clock ::now();
17 std:: chrono ::duration <double , std::milli > ms = t2 - t1;
18 std::cout << "std:: accumulate␣result␣" << result
19 << "␣took␣" << std::fixed << ms.count () << "␣

ms\n";
20 }
21

22 {
23 auto t1 = std:: chrono :: high_resolution_clock ::now();
24 auto result = std:: reduce(
25 std:: execution ::par ,
26 nums.begin (), nums.end());
27 auto t2 = std:: chrono :: high_resolution_clock ::now();
28 std:: chrono ::duration <double , std::milli > ms = t2 - t1;
29 std::cout << "std:: reduce␣result␣" <<
30 std:: scientific << result << "␣took␣" << std::

fixed << ms.count() << "␣ms\n";
31 }
32

33 return 0;
34 }

Listing 3.9: Compilation of the parallel algorithm example.

1 g++ -std=c++1z -ltbb lecture6 -loops.cpp
2 ./a.out
3 std:: accumulate result 9e+08 took 10370.689498 ms
4 std:: reduce result 9.000000e+08 took 612.173647 ms
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4. Introduction to HPX

HPX (High Performance ParalleX) is a general purpose C++ runtime system for parallel
and distributed applications of any scale. It strives to provide a unified programming
model which transparently utilizes the available resources to achieve unprecedented levels
of scalability. This library strictly adheres to the C++14 Standard and leverages the Boost
C++ Libraries which makes HPX easy to use, highly optimized, and very portable. These
are the most notable features of HPX:

• HPX exposes a uniform, standards-oriented API for ease of programming parallel
and distributed applications.

• HPX provides unified syntax and semantics for local and remote operations.
• HPX exposes a uniform, flexible, and extendable performance counter framework [39,
40] which can enable runtime adaptivity

• HPX has been designed and developed for systems of any scale, from hand-held
devices to very large scale systems (Raspberry Pi, Android, Server, up to super
computers [25, 47]).

For a brief overview of HPX, we refer to [46, 57] and for a detailed overview, we refer
to [45]. For more details about asynchronous many-task systems (AMT), we refer to [100].

4.0.1 Using HPX

Let us look into HPX’s hello world example. We have to ways to initialize the HPX
runtime system. First way is to include the header #include <hpx/hpx_main.hpp>, see
Listing 4.1. In that case, the only thing we have to add is the new header file. Note
that this header file should be the first one to be included. Before we can call the first
HPX function, the HPX runtime system needs to be initialized. Second way is to include
the header #include <hpx/hpx_init.hpp>, see Listing 4.2. In that case, the hpx_main
function is defined in Line 4 and we place the code as we like to have in the main function
there and use hpx::finalize() as the return value to make sure the HPX runtime system
is stopped. To initialize the HPX runtime system, the function hpx::init(argc, argv)
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Listing 4.1: Initializing the HPX runtime system (I).

1 #include <hpx/hpx_main.hpp >
2 #include <iostream >
3

4 int main()
5 {
6 std::cout << "Hello␣World !\n" << std::endl;
7 return 0;
8 }

Listing 4.2: Initializing the HPX runtime system (II).

1 #include <hpx/hpx_init.hpp >
2 #include <iostream >
3

4 int hpx_main(int , char **)
5 {
6 // Say hello to the world!
7 std::cout << "Hello␣World !\n" << std::endl;
8 return hpx:: finalize ();
9 }

10

11 int main(int argc , char* argv [])
12 {
13 return hpx::init(argc , argv);
14 }

has to be called. Note that this header file should be the first one to be included. All HPX
functions have to be called within the hpx_main function to make sure the HPX runtime
system is initialized.

Assuming that HPX is installed on the system, we need to provide some compiler
and linker flags to compile the HPX application. Note that on Fedora one can install
HPX by using sudo dnf install hpx-devel or using this tutorial111. Listing 4.3 shows
a example CMakeLists.txt file to compile the programs shown in Listing 4.1 or Listing 4.2.
For more details about CMake, we refer to Section 1.7. Listing 4.4 shows how to compile
the program and run it. Note that the command line option --hpx:threads specifies how
many CPUs HPX is allowed yo use.
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Listing 4.3: Content of the CMakeLists.txt
to build HPX applications.

1 cmake_minimum_required(
VERSION 3.3.2)

2 project(my_hpx_project CXX)
3 find_package(HPX REQUIRED)
4 add_hpx_executable(

my_hpx_program
5 SOURCES main.cpp
6 )

Listing 4.4: Build instructions for CMake.

1 cmake .
2 make
3 ./ my_hpx_program --hpx:

threads =4

4.1 Parallel algorithms

In Section 3.4 we looked at the experimental parallel algorithms provided by the C++ STL.
HPX provides the parallel algorithms as well and the API is identical and we just need
to replace the std name space with hpx name space. Recall the example in Listing 3.8
and now we implement the same example using HPX’s parallel algorithms. Listing 4.5
shows how to compute the sum of the elements in the vector values parallel. Note that
solely had to replace std::execution::par by HPX’s name space which is a little bit
different and reads as hpx::execution::par. The same for std::reduce and this name
space reads as hpx::ranges::reduce112. Until now the API is equal to the one of the
C++ STL. Now, we look into the additional features provided by HPX. First, we look
into the additional features for execution policies. In Line 16 we specify a dynamic chunk
size dynamic_chunk_size and pass this execution policy to the execution policy using
.with(scs). Following execution parameters are provided:

• hpx::execution::static_chunk_size113

Loop iterations are divided into pieces of a given size and then assigned to threads.
• hpx::execution::auto_chunk_size114

Pieces are determined based on the first 1% of the total loop iterations.
• hpx::execution::dynamic_chunk_size115

Dynamically scheduled among the cores and if one core finished it gets dynamically
assigned a new chunk.

For more details, we refer to [38]. Another possibility is to use machine learning techniques
for choosing the chunk size. For more details, we refer to [65]. Second, in HPX once
can obtain a future from a parallel for loop and us it for synchronization. In Line 23
of Listing 4.5 shows how to obtain a future with the result of the reduce operation by
adding the expression hpx::execution::task as an argument to the execution policy.
Now we can use the parallel for loops and combined them with the future for asynchronous
programming. Note that currently these features are only available yet in HPX. Third,
HPX provides range-based for loops116 which is neat for iteration over the elements of a
vector using the index and not the vector element itself. Listing 4.6 shows how to use a
range-based parallel for loop to print the vector’s element to the standard output stream.
The second function argument is the first value of the vector, the third one the vector’s
length, and the fourth argument is a Lambda function, see Section 1.9. The first argument
of the Lambda function is the index of the the vector to be processed in the range of 0 and
values.size().
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Listing 4.5: Parallel algorithms (reduce) using HPX.

1 #include <hpx/hpx_init.hpp >
2 #include <hpx/include/parallel_reduce.hpp >
3

4 int main()
5 {
6

7 std::vector <double > values = {1,2,3,4,5,6,7,8,9};
8

9 // HPX parallel algorithms
10 std::cout << hpx:: ranges :: reduce(hpx:: execution ::par ,
11 values.begin (),
12 values.end(),
13 0);
14

15 // HPX parallel algorithms using execution policies
16 hpx:: execution :: dynamic_chunk_size scs (10);
17 std::cout << hpx:: ranges :: reduce(hpx:: execution ::par.with(cs),
18 values.begin (),
19 values.end(),
20 0);
21

22 // HPX parallel algorithms returning a future
23 auto f = hpx:: ranges :: reduce(
24 hpx:: execution ::par(hpx:: execution ::task),
25 values.begin (),
26 values.end(),
27 0);
28

29 std::cout << f.get();
30

31 return EXIT_SUCCESS;
32 }
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Listing 4.6: Parallel range-based for loops using HPX.

1 #include <hpx/hpx_init.hpp >
2 #include <vector >
3 #include <iostream >
4 #include <hpx/include/parallel_for_loop.hpp >
5

6 int main()
7 {
8

9 std::vector <double > values = {1,2,3,4,5,6,7,8,9};
10

11 hpx:: for_loop(
12 hpx:: execution ::par ,
13 0,
14 values.size();
15 []( boost :: uint64_t i)
16 {
17 std::cout << values[i] << std::endl;
18 }
19 );
20

21 return EXIT_SUCCESS;
22 }

4.2 Asynchronous programming
HPX provides the same features as the C++ language for asynchronous programming, see
Chapter 6 for more details. In this section, we show how to use HPX’s function instead of
std::future and std::async, since HPX provides more flexibility here. As a disclaimer
this is really easy, since we can use the code of the previous example and just replace the
name space std with the name space hpx. Listing 4.7 shows an example of the example for
computing the square number of a asynchronously. In Line 2 the header #include <hpx
/incldue/lcos.hpp> is needed to use hpx::future and hpx::async117. In Line 12 the
function square is called asynchronously using hpx::async(square,10). Note that the
first argument is the name of the function and the second one the function argument. The
function call return a hpx::future<int> since the return type of the function is int. To
access the result of the function, if the computation has finished the function .get() is used.
Note that the only difference here is not to include the header #include <future> and
use hpx::future instead of std::future and same for hpx:async instead of std::async.
Thus, it is really easy to switch between HPX and C++ for asynchronous programming.

Exercise 4.1 Write the program in Listing 6.3 using hpx::future and hpx::async. �

The benefit of using HPX is that more features for the synchronization of future
is provided. In Listing 4.8 some of these functionality is shown. In Line 1 a std::
vector holding the hpx::future<int> is declared. In Lines 2–3 two futures of the two
asynchronous function class are pushed to the vector. In Line 6 the expression hpx::
when_all is used to make a barrier which waits until all computations of the asynchronous
launched functions are ready. By calling .then() we specify what is done if all futures are
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Listing 4.7: Asynchronous computation of the square number using HPX.

1 #include <hpx/hpx_init.hpp >
2 #include <hpx/incldue/lcos.hpp >
3 #include <iostream >
4

5 int square(int a)
6 {
7 return a*a;
8 }
9

10 int main()
11 {
12 hpx::future <int > f1 = hpx:: async(square ,10);
13

14 std::cout << f1.get() << std::endl;
15

16 return EXIT_SUCCESS;
17 }

ready. To do so, we provide a lambda function, see Section 1.9, which has a future with
the std::vector of futures as its argument. In Line 7 we use the function .get() and
this future to get the std::vector of futures. In line 7 and Line 8, we print the results as
usual. Following synchronization options118 are available:

• hpx::when_all
It AND-composes all the given futures and returns a new future containing all the
given futures.

• hpx::when_any
It OR-composes all the given futures and returns a new future containing all the
given futures.

• hpx::when_each
It AND-composes all the given futures and returns a new future containing all futures
being ready.

• hpx::when_some
It AND-composes all the given futures and returns a new future object representing
the same list of futures after n of them finished.

4.2.1 Advanced asynchronous programming

HPX provides additional features for asynchronous programming which are not yet in
the C++ standard. In this section, we look into these features on some small examples,
In Section 13.2 all of them are combined to have the asynchronous implementation of
one-dimensional heat equation. First, we look into one feature which will not be used
for the one-dimensional heat equation, however, it is still useful to combine the parallel
algorithms in Section 4.1 with asynchronous programming. This feature is shown in Line 22
of Listing 4.5. Second, we will look into the features which we will use for the asynchronous
implementation of the heat equation. In some cases, for example if we initialize values at
the beginning of simulation, we need a future to synchronize with the actual computation
but this future is already ready since no computation is needed. Listing 13.4 shows the
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Listing 4.8: Advanced synchronization of futures using HPX.

1 std::vector <hpx::future <int >> futures;
2

3 futures.push_back(hpx::async(square ,10);
4 futures.push_back(hpx::async(square ,100);
5

6 hpx:: when_all(futures).then ([]( auto&& f){
7 auto futures = f.get();
8 std::cout << futures [0]. get()
9 << "␣and␣" << futures [1]. get();

10 });

Listing 4.9: Use a ready future to initialize the computational data.

1 auto f = hpx:: make_ready_future (1);
2 /*
3 * Since the future is ready the output will happen
4 * and there will be no barrier.
5 */
6 std::cout << f.get() << std::endl;

usage of hpx::make_ready_future to generate a future filled with the initial value of one.
Since we used a so-called ready future the code in Line 6 will be immediately executed,
since there will no barrier because the future is ready and the data is available when we
call .get().

HPX provides additional features for continuation of the work flow. We will look into to
different ways to attach some new task once the depending futures are ready. Listing 4.10
show the first approach were the future return by hpx::when_all is used to specify the next
depending task. In Line 2 and Line 3 the futures of the two asynchronous function calls are
stored in the vector futures and in Line 7, we use hpx::when_all for synchronization as
before. However, this time we use the fact that hpx::when_all returns a future and we can
call the .then() function of the returned future. We pass a lambda function, see Section 1.9,
to this function which contains the code which is executed once the two futures are ready.
The first and only argument is the std::vector<hpx::lcos::future<int>> futures
inside a hpx::lcos::future<std::vector<hpx::lcos::future<int>>>. Therefore, we
have to call f.get() in Line 10 to access the std::vector. In the for loop, we iterate
over the two futures and gather the results which will be printed in Line 14.

A more efficient way were is no need to wrap the std::vector into some additional
future. Listing 4.11 shows the usage of hpx::dataflow to do exactly the same what is
shown in Listing 4.10. The first argument indicates if the lambda function, see Section 1.9,
will be executed synchronously hpx::launch::sync or asynchronously hpx::launch::
async returning a future. As the second element the lambda function which is executed
after the futures are ready is given. In the for loop the results are gather and finally
printed.

Another important feature is the unwrapping the futures to pass their content to
some function directly without calling .get() for all of the futures. Look at Listing 4.12
shows the function sum taking two integers as its arguments and print their sum on the
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Listing 4.10: Usage of hpx::when_all.then() for the continuation of futures.

1 std::vector <hpx::lcos::future <int >> futures;
2 futures.push_back(hpx::async(square ,10));
3 futures.push_back(hpx::async(square ,100));
4

5 // When all returns a future containing the vector
6 // of futures
7 hpx:: when_all(futures).then ([]( auto&& f){
8 // We need to unwrap this future to get
9 // the content of it

10 auto futures = f.get();
11 int result = 0;
12 for(size_t i = 0; i < futures.size();i++)
13 result += futures[i].get();
14 std::cout << result << std::endl;
15 });

Listing 4.11: Usage of hpx::dataflow for the continuation of futures.

1 hpx:: dataflow(hpx:: launch ::sync ,[]( auto f){
2 int result = 0;
3 for(size_t i = 0; i < f.size();i++)
4 result += f[i].get();
5 std::cout << result << std::endl;
6 },futures);



4.3 Semaphores 63

Listing 4.12: Unwrapping a function to pass futures without calling .get().

1 void sum(int first , int second){
2

3 std:: cout << first + second << std::endl;
4

5 }
6

7 auto f1 = hpx::async(square ,10);
8 auto f2 = hpx::async(square ,100);
9

10 // We have to call .get() to pass
11 // the values of the future
12 sum(f1.get(),f2.get());
13

14 // We can unwrapp the function
15 auto fp = hpx::util:: unwrapping(sum);
16

17 // After unwrapping , we can pass the future
18 // directly to the function
19 hpx:: dataflow(hpx:: launch ::sync ,fp,f1,f2);

standard output stream in Line 1. In Line 7 and Line 8 we call the function square
asynchronously, which is not shown here and just computes the square of the argument. In
Line 12 the function sum is called and we need to call .get() twice to access the content of
the futures. Doing this for two futures is doable, but no really convenient. HPX provides
the unwrapping of the function sum so the .get() will be called internally and we can
pass the futures directly to the function. In Line 15 we use hpx::util::unwrapping to
unwrap the function sum and we get some function pointer fp back which points to the
unwrapped function. In Line 19 we can now use hpx::dataflow to launch the function
pointer fp synchronously and passing the futures directly without calling the .get().

4.3 Semaphores
In Section 5.1 the std::mutex, which is tied to one thread and only one thread can lock
or unlock the mutex. Now the look into a semaphore and here any thread can access
the ownership on a semaphore. Note that the C++ standard does not define semaphores
and they are only available suing HPX. The concept of semaphores was introduced by E.
Dijkstra [27] and more details are available here [28]. Before we look into the source code,
we will focus on one example.

Imagine a public library lending books with no late fee. The library has 5 copies of
the Hitckhiker’s Guide to the Galaxy [4]. So the first five people can borrow these copies
and keep them for an infinite amount of time, since there are no late fees. Now, if person
number six wants to borrow one copy, this person has to wait until one of the five borrowers
return one copy. So the library assigns one of the copies to this person, but if none is
waiting the copy just goes back to the shelf until one asks for it.

This example can be explained in C++ using a semaphore. A semaphore has two
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Listing 4.13: HPX’s semaphores.

1 // Generate a semaphore with maximal count nd
2 hpx::lcos::local :: sliding_semaphore sem(nd);
3

4 // Release ownership for t
5 sem.signal(t);
6

7 // Obtain ownership for t
8 sem.wait(t);

variables. First, a maximum count which is from the example the total amount of copies.
Second, a current count which relates to the amount of currently borrowed copies. Now,
we have the the so-called P-Operation and V-Operation. The P-Operation is done using
the wait function. Here the variable current count is decreased. If the count is ≥ zero
then the decrement just happens and the function will return. If the count is zero the
function will wait until one other thread called the signal function. This is refereed to as
P-Operation. If the signal function is called, the current count is increased. If the count
was zero before you called signal function and another thread was blocked in wait then
that thread will be executed. If multiple threads are waiting, only one will be executed
and the reaming ones have to wait for another increment of the counter. This is refereed
to as V-Operation. Listing 4.13 shows the usage of the semaphore in HPX. In Line 2 the
semaphore is generated an the maximal count is passed as argument nd. In Line 5 the
ownership of thread t is released using the P-Operation (signal function). In Line 8 the
thread t obtains the ownership using the V-Operation (wait function).

4.4 Distributed programming

4.4.1 Serialization

In shared memory parallelism the allocated data resits in the memory on the node, however,
in the distributed memory parallelism each of the physical nodes has its own memory. If
one uses std::vector<double> or double[] this is a so–called unflatten data structure
representation in C++. However, this data structure can not be wrapped in a parcel and
send over the network to another physical node. Before the data structure can be wrapped
in a parcel, the data needs to be flatten to a one-dimensional stream of bits. For the
serialized stream of bits there is human-readable (text) and non-human-readable (binary)
format possible. The advantage of the text variant is that the message is readable, but is
larger. For the binary variant the message is might smaller, but can not be analyzed for
debugging.

Figure 4.1 shows the protocol to send data over the network from locality 1 to locality
2. On locality 1, first the data is allocated in the local memory, for example one could
allocate the vector std::vector<double> vec = 0.0,0.5,1.0; in the local memory of
locality 1. Second, the std::vector<double> is serialized which means the std::vector
is transformed in a stream of bits containing the data of the vector and some additional
information, e.g. the size of elements. Third, the flattened bit of streams is wrapped into a
parcel which is send over the network to locality 2. For more details for sending parcels
over the network, we refer to Section 7. On the receiving locality 2, first the parcel is
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Figure 4.1: The communication between the localities (nodes) is handled by the so-called parcel
port [55]. HPX uses MPI or libfrabric for communication between nodes.

Listing 4.14: Serialization in HPX.

1 // Allocation of the data
2 size_t size = 5;
3 double* data = new double[size];
4

5 // Serialization
6 using hpx:: serialization :: serialize_buffer;
7

8 serialize_buffer <double > serializable_data(
9 data , size ,

10 serialize_buffer <double >:: init_mode :: reference);
11

12 // Deserialization
13 double* copied_data = serializable_data.data();

received and unpacked. Second, the data for the content of the parcel is allocated in the
local memory of locality 2. Third, the flattened data from the received parcel is deserialized
and stored in the local memory of locality 2.

Before, we looked into the general concept of serialization and now we look on the
implementation within HPX. In Listing 4.14 the data is allocated in the first three lines.
To serialize the double* data array, first a hpx::serialization::serialize_buffer us
used in Line 6 is defined. In Line 8 the buffer serialize_buffer<double> with double
as its template argument is used, since we intend to serialize the double* data array. As
the arguments of the constructor, we pass the pointer to the data and the size of the data.
For now we ignore the third argument and just use this mode as the default mode. This is
the part of the serialization which happens on locality 1. The deserialization which would
happen on locality 2 is shown in Line 12, assuming we received the serializable_data
object on locality 2. On locality 2 a pointer data* copied_data is used to store the
deseralized data obtained by the function .data(). For sending and receiving parcels, we
will look into components and action, in Section 4.4.2.

4.4.2 Components and Actions
For distributed computations within HPX, we need to look following features:
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Listing 4.15: Plain actions in HPX.

1 static void square(double a){
2

3 std::cout << a * a << std::endl;
4 }
5

6 // Register the plain action
7 HPX_PLAIN_ACTION (&square , square_action)

1. Components:
The server represents the global data and is a so-called HPX component which allows
to create and access the data remotely through the global address space (AGAS)[56].

2. Client:
The client represents the local and remote access to the component’s data on all local
or remote localities.

3. Component action:
Each function of the component (server) needs to be wrapped into a component
action to be remotely and locally available.

4. Plain actions:
Allows to wrap global (static functions in an action. So we can call this function
remotely and locally.

Action

Plain actions

A plain action allows to call a static function locally and remotely. For a plain action,
a static function square is defined, see Listing 4.15. Note that actions can have a
return expression, but we can not change data within the action. In Line 6 the function
square is registered as a action with the name square_action using the expression
HPX_PLAIN_ACTION119.

4.4.3 Receiving topology information

Following functions are available to receive topology information:
• hpx::find_here120

Get the global address of the locality the function is called on.
• hpx::find_all_localities121

Get the global addresses of all available localities.
• hpx::find_remote_localities122

Get the global addresses of all available remote localities.
• hpx::get_num_localities123

Get the number of all available localities.
• hpx::find_locality124

Get the global address of any locality hosting the component.
• hpx::get_colocation_id125

Get the locality hosting the object with the given address.
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4.5 Overview of HPX headers
This section recaps some of the HPX headers and the functionality they provide. For a
overview of all HPX headers, we refer to HPX’s documentation 126.

• #include <hpx/hpx_main.hpp>
This header includes the HPX run time systems and has to be always the first HPX
header to be included. This header provides a way to initialize the HPX runtime
system, see Listing 4.1. For more details, we refer to Section 4.0.1.

• #include <hpx/hpx_init.hpp>
This header includes the HPX run time systems and has to be always the first HPX
header to be included. This header provides a different way to initialize the HPX
runtime system, see Listing 4.2. For more details, we refer to Section 4.0.1.

• #include <hpx/include/locs.hpp>
This header provides for example hpx::future (#include <hpx/future.hpp>) and
hpx::async (#include <hpx/include/future.hpp>) functionality. Fore more de-
tails, we refer to Section 4.2. In addition, the advanced synchronization features, see
Section 4.2.1, are included in this header as well.

• #include <hpx/algorithm.hpp>
This header provides the functionality of the parallel algorithms and compares to
#include <algorithm>.

– #include <hpx/include/parallel_for_loop.hpp> This header includes the
method hpx::for_loop functionality, see Listing 4.6. Note if you intend to use
multiple parallel algorithms, you could use #include <hpx/algorithm.hpp>
which compares to #include <algorithm>.

– #include <hpx/include/parallel_reduce.hpp>
This header includes the method hpx::ranges::reduce functionality which
is comparable to the std::reduce, see Listing 4.5. Note if you intend to use
multiple parallel algorithms, you could use #include <hpx/algorithm.hpp>
which compares to #include <algorithm>.

• #include <hpx/modules/synchronization.hpp>
This header provides the hpx::lcos::local::sliding_semaphore, see Listing 4.13.
Fore more details, we refer to Section 4.3.

• #include <hpx/include/actions.hpp>
This header provides the functionality for actions which we need for distributed
programming, see Section 4.4.2.

• #incldue <hpx/include/components.hpp>
Provides the he functionality for the components which we need for the distributed
programming, see Section 4.4.2.

• #include <hpx/include/dataflow.hpp>
Provides hpx::dataflow::dataflow, see for example Listing 13.4.
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5. Parallel computing

In this Chapter, a brief overview of the technical aspects of parallel computing is given.
Note that this course focuses on the implementation details, like asynchronous program-
ming, see Chapter 6; parallel algorithms, see Section 3.4; and the C++ standard library for
parallelism and concurrency (HPX), see Chapter II. Note that another option for parallel
programming or multi-threaded programming is Open Multi-Processing127 (OpenMP)
and some more recent ones Rust128, Go129, and Julia language130. However, we provide
some details and further references for the technical aspects and hardware details. For a
general overview, we refer to [64]. Another option are acceleration cards like NVIDIA® or
AMD® GPUs.

Let us begin with a definition of parallelism: 1) we need multiple resources which can
operate at the same, 2) we have to have more than one task that can be performed at the
same time, 3) we have to do multiple tasks on multiple resources the same time. First,
we have to have multiple resources, e.g. multiple threads of a computation node at the
same time. However, with current hardware architecture this is not an issue. Second, this
part is more interesting, since we need some code which is independent of each other and
can be executed concurrent. Third, here we want to have overlapping computations and
communication on multiple resources. For more details about parallel computing, we refer
to [36, 101].

For the second part of the definition, Amdahl’s law [5] or strong scaling is important.
Amdahl’s law is given as

S =
1

(1−P)+ P
N

(5.1)

where S is the speed up, P the proportion of parallel code, and N the numbers of threads.
Figure 5.1 plots Amdahl’s law for different ratios of parallel code. Obviously, for zero
percent parallel code, there is no speedup. If the portion to parallel code increases, the
speedup increases up to a certain amount of threads. Therefore, the parallel computing
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Figure 5.1: Plot of Amdahl’s law for different parallel portions of the code.
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Figure 5.2: Flow chart of the sequential evaluation of the dot product of two vectors.

with many threads is only beneficial for highly parallelism in our program. For example
if our code took 20 hours using a single thread to complete and there in a part of one
hour which can not be executed in parallel. Thus, only 19 hours of execution time can
be parallized (p = 0.95) and independent of the amount of threads we use the theoretical
speedup is limited to S = 1/(1− p) = 20.

Before we look into different parallelism approaches, we look into the example how
to compute the dot product S = X ·V = ∑

N
i xiyi of two vectors X = {x1,x2, . . . ,xn} and

Y = {y1,y2, . . . ,yn} in a sequential manner and extend this example to the various paral-
lelism approaches. So we have to compute S = (x1y1)+(x2y2)+ . . .+(xnyn) as shown in the
flow chart in Figure 5.2. In the sequential processing, the first to elements of each vector
are multiplied x1 × y1 and added to the temporal result. After that the second elements
are multiplied and added to the temporal result, and so on.

The first parallelism approach is the pipeline parallelism [80]. The pipeline parallelism
is used in vector processors and in execution pipelines in all general microprocessors. Let
us look into some example of from the automotive industry. First, the body of the car is
assembled. Second, workers assemble the chassis. Third, workers add the engine into the
chassis. Next, the steering wheel is added and many more steps until the car is finally
assembled. TO make this process efficient, the workers assembling the chassis do not wait
until the last step is finalized before they start working on the next chassis. Side note this
is similar to the assembly line introduced bu Henry Ford to enable mass production of
cars [104].
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Figure 5.4: Reduction tree for the dot product using single instructions and multiple data.

Figure 5.3 shows the data flow chart for the pipeline parallelism. In the first step, the
values x1 and y1 are read from memory. In the second step the values are multiplied. In
the last step the result of the multiplication is added to the variable S. However, the other
threads do not idle until the result is computed and do a previous step if possible. Meaning
if the multiplication at stage two is happening, another thread starts to get the next values.
For more details, we refer to [79].

The second parallelism approach is the Single instructions and multiple data (SIMD).
SIMD is part of Flynn’s taxonomy, a classification of computer architectures, proposed by
Michael J. Flynn in 1966 [29, 33]. Following aspects are relevant

• All perform same operation at the same time
• But may perform different operations at different times
• Each operates on separate data
• Used in accelerators on microprocessors
• Scales as long as data scales.

Figure 5.4 shows the reduction tree for the dot product computation. For this parallelism
approach all threads perform the same operation at the same time. In our case all available
threads multiply two values at the first level. Second one of these threads add the partial
results. Until not all elements are read from the vector these steps are repeated. The
last step is to accumulate all partial results and the final result is available. For example
previous CUDA architectures were designed this way and introducing branching had some
effect on the performance. Newer CUDA architectures perform better here and these things
are explained in following talk131.
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Figure 5.6: Non-uniform memory access
(NUMA)

Memory access
For parallel computing, the memory access scheme is important to understand performance
behavior. If we initialize for example the two vectors in the dot product example, some
space in the memory is reserved and filled with the values. For the computation of the
dot product these elements have to be read from memory and the CPU is doing the
computation. In a layman’s view the CPU is connected to the memory via a so-called bus.
Depending on the bus’s architecture the access time differs and may have effects on the
performance if there is a switch from one CPU to the second CPU.

The first memory access scheme is uniform memory access (UMA), see Figure ref-
fig:memory:uma, where all memory is attached to one bus and all CPU are attached to the
same bus. Therefore, the memory access times are the same for all CPU. So we do not
see any effect if we switch from one two two CPU. The second memory access scheme is
non-uniform memory access (NUMA), see Figure 5.6. Here, the access time to the memory
depends on the memory location relative to the CPU. Thus, local memory access is fast
and non-local memory access has some overhead. For more details about memory access,
we refer to [44, 81].

5.1 Caution: Data races and dead locks

Remember with great power comes great responsibility! Meaning with shared memory
parallelism you add an additional source of error to your code. When using parallel
execution policy, it is the programmer’s responsibility to avoid

• data races
• race conditions
• deadlocks.

Let us look into some code examples for these kind of errors. A data race exists when
multi-threaded (or otherwise parallel) code that would access a shared resource could do
so in such a way as to cause unexpected results. Listing 5.1 shows an example for a data
race for the variable sum. Since the parallel execution policy is used, multiple threads
can access the variable sum at the same time which means that not all threads can write
to the variable. Thus, the result is might not correct. There are two solutions to avoid
the data race. First, the atomic library132. The atomic library1 provides components
for fine-grained atomic operations allowing for lockless concurrent programming. Each
atomic operation is indivisible with regards to any other atomic operation that involves
the same object. Atomic objects are free of data races. Listing 5.2 shows the solution

1https://en.cppreference.com/w/cpp/atomic

https://en.cppreference.com/w/cpp/atomic
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Listing 5.1: Example code and Solution for a data race.

1 // Compute the sum of the array a in parallel
2 int a[] = {0,1,2,3,4};
3 int sum = 0;
4 std:: for_each(std:: execution ::par ,
5 std::begin(a),
6 std::end(a), [&]( int i) {
7 sum += a[i]; // Error: Data race
8 });

Listing 5.2: Solution to avoid the data race using std::atomic.

1 // Compute the sum of the array a in parallel
2 int a[] = {0,1};
3 std::atomic <int > sum {0};
4 std:: for_each(std:: execution ::par ,
5 std::begin(a),
6 std::end(a), [&]( int i) {
7 sum += a[i];
8 });

using std::atomic:<int>133. The second solution is shown in Listing 5.3. Here, the
std::mutex class is used to avoid the data race. The mutex class134 is a synchronization
primitive that can be used to protect shared data from being simultaneously accessed by
multiple threads. In Line 4 a std::mutex m; is generated. In Line 8 the lock of the code
is started by using m.lock(); and in Line 10 the lock is released by using m.unlock();.

Exercise 5.1 Give a definition for std::atomic and std::mutex in your own words. �

Another source of error is the race condition where a check of a shared variable within a
parallel execution and another thread could change this variable before it is used. Listing 5.4
shows the solution to avoid the race condition. Imagine the code without the std::mutex
and the implication to get a wrong result. In the code there is a check if x is equal to 5
and a special treatment of the computation in this case. Now in Line 4 it was true that
x was equal to five and the thread enters the if branch. However, in between another
thread could change the value of x and not y = 5 *2 is computed. By using the mutex
this situation is avoided.

Exercise 5.2 Explain a data race in your own words and explain why a std::mutex avoids
the data race. �

A deadlock describes a situation where two or more threads are blocked forever and
waiting for each others. Following example taken from135 explains a deadlock nicely.

Alphonse and Gaston are friends, and great believers in courtesy. A strict rule of
courtesy is that when you bow to a friend, you must remain bowed until your friend has
a chance to return the bow. Unfortunately, this rule does not account for the possibility
that two friends might bow to each other at the same time.
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Listing 5.3: Solution to avoid the data race using std::mutex.

1 // Compute the sum of the array a in parallel
2 int a[] = {0,1};
3 int sum = 0;
4 std::mutex m;
5 std:: for_each(std:: execution ::par ,
6 std::begin(a),
7 std::end(a), [&]( int i) {
8 m.lock();
9 sum += a[i];

10 m.unlock ();
11 });

Listing 5.4: Example for the race condition.

1 std::mutex m;
2

3 m.lock();
4 if (x == 5) // Checking x
5 {
6 // Different thread could change x
7

8 y = x * 2; // Using x
9 }

10 m.unlock ();
11 // Now it is sure that y will be 10
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Exercise 5.3 The implementation of this examples is available on GitHub136. Play around with
the example and try to understand why the code results in a deadlock. �





6. Asynchronous programming

A different concept for shared memory parallelism is asynchronous programming [105].
Before we look into asynchronous programming, we look again into the concept of serial
programming. Figure 6.1 shows the dependency graph for one computation and one can
see that we can compute P and X independent and only H depends on both of them.
Listing 6.1 shows the serial computation of the dependency graph. Each line of code is
executed line by line Each time a function is called the code waits until the function finishes.
Thus, we can not compute P and X independently, even if the data is independent.

H

P X

Figure 6.1: Example dependency graph

Listing 6.1: Synchronous execution of the depen-
dency graph.

1 auto P = compute ();
2 auto X = compute ();
3 auto H = compute(P,X);

To executed lines asynchronously the C++ language provides the std::async137

expression provided by the #include <future>. Listing 6.2 shows the asynchronous
implementation of the dependency graph in Figure 6.1. Line 2 shows the usage of std::
async for the function compute. The first argument is the name of the function or a lambda
expression, see Section 1.9. Because we used std::async this line of code is executed in the
background on a different thread and the next line of code is executed, even if the result of
the computation is not ready yet. Therefore, std::async return a std::future<int>138

object provided by the #include <future> header which is a template and contains the
return type of the function which is in this example the int data type. In Line 4, the
computation of X is started on another thread. Such that both computations happens
at the same time. In Line 7–9 the results of the asynchronous function call are gathered,
since these are needed to compute H. With the .get() function a barrier is introduced
and the line of codes waits until the computation is ready. In our case, we can wait since
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Listing 6.2: Asynchronous execution of the dependency graph.

1 // Compute P
2 std::future <int > f1 = std:: async(compute);
3 // Compute X
4 auto f2 = std::async(compute);
5

6 // Gather the results
7 int P = f1.get();
8 int X = f2.get();
9

10 // Compute the dependent result H
11 std::cout << compute(P,X) << std::endl;

we need the two results to compute the last one. Meaning that Line 8 is only executed if
the computation in Line 2 has finished. Following synchronization features are available:

• .get() returns the result of the functions and wait until the computation finished
• .wait()139 waits until the computation finished
• .wait_for(std::chrono::seconds(1))140 returns if it is not available for the spec-
ified timeout duration

• .wait_until(std::chrono::seconds(1))141 waits for a result to become available.
It blocks until specified timeout time has been reached or the result becomes available,
whichever comes first.

Example
Let us look into one example to show the parallelism using asynchronous programming for
the Taylor series. The approximation of the sin function is given as

sin(x) =
N

∑
n=0

(−1)n−1 x2n

(2n)!
(6.1)

One approach to parallize the above function using two threads is:
1. Split n into slices, e.g. 2 times n/2 for two threads
2. Start two times std::async where each thread computes n/2

3. Use the two futures to synchronize the results
4. Combine the two futures to obtain the result.

To distribute n into slices, we need to write the sum in Equation (6.1) as

end

∑
n=begin

(−1)n−1 x2n

(2n)!
. (6.2)

Listing 6.3 shows how to implement the function to splice the computation of the Taylor
series, see Line 5–14. In Line 18–19 the two splices n/2 are launched from 0 up to 49 on the
first thread and from 50 up to 99 on the second thread. In Line 22 the result is gathered
and finally the accumulated result is evaluated. For more details, we refer to following
talk142.

To compile the code using asynchronous programming, we need to add -pthread to our
compiler to use the POSIX threads to launch the functions asynchronous (std::async).
More details about POSIX threads [16, 60].
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Listing 6.3: Asynchronous computation of the sin function using a Taylor series.

1 #include <future >
2 #include <iostream >
3

4 // Function to compute portion of the Taylor series
5 double taylor(size_t begin , size_t end ,
6 double x,size_t n){
7 double res = 0;
8

9 for( size_t i = begin ; i < end ; i++)
10 {
11 res += pow(-1,i-1) * pow(x,2*n) / factorial (2*n);
12 }
13 return res;
14 }
15

16 int main(){
17 // Asynchronous computation using two slices
18 auto f1 = std::async(taylor ,0 ,49 ,2 ,100);
19 auto f2 = std::async(taylor ,50 ,99 ,2 ,100);
20

21 // Gather the result
22 double result = f1.get() + f2.get();
23

24 // Print the result
25 std::cout << "sin (2)=␣" res << std::endl;
26

27 return 0;
28 }





7. Distributed Programming

Previously, we considered shared memory parallelism which means we only considered one
physical computational node. Now, we will look into distributed programming because
the memory or the computational resources of one physical computational node are not
sufficient. A good definition for distributed computing is given in [102]: “A distributed
system is a system whose components are located on different networked computers, which
communicate and coordinate their actions by passing messages to one another from any
system”. Fore more details about distributed systems, we refer to [102]. Figure 7.1 sketches
the components of a distributed system. We have multiple computational nodes which are
connected to a router or switch and they send messages to each other over the network.
In that specific example, we have two nodes connected to one router. For the network
connection Ethernet or more efficient Mellanox® InfiBand™ is used. A common standard to
send and receive messages is the Message Passing Interface (MPI) standard. Here, we have
the similar definition that the MPI standard specifies the API and several implementations,
e.g. OpenMPI143 or mpich2144, are available. Next to these open source implementations
there are commercial implementations, e.g. IntelMPI and IBM Spectrum-MPI available.
For more details about MPI programming, we refer to [37]. Listing 7.1 shows some small
example for sending messages and receiving messages. In Line 11 the MPI environment is
initialized. In Line 12 the rank or if of the node where the code is executed is determined.

Node 1 Node 2

Router

Figure 7.1: Sketch of the components of a distributed system. We have multiple computational
nodes which are connected to a router or switch and they send messages to each other over the
network. In that specific example, we have two nodes connected to one router. For the network
connection Ethernet or more efficient Mellanox® InfiBand™ is used. A common standard to send
and receive messages is the Message Passing Interface (MPI) standard.
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Node 1 Node 2

Node 4 Node 3

Figure 7.2: Example for some circular depen-
dency which might result in some deadlock
depending on how the messages are send and
received.

Node 1

Node 4 Node 3 Node 2

Figure 7.3: A common principle is to use
supervisor node the node with rank zero and
this node is used to control messages with all
nodes.

Some common convention is that node with rank zero is the head node and does the
synchronization. In Line 15 the head node waits for receiving some message and in Line 20
the other node is sending some message to the head node. Note that the MPI library has
only a C interface and not C++ interface is available yet. The intention of this example
was to show you how to use the low-level API of the MPI library and later we will see in
Section 4.4 that HPX provides some abstraction layer to send and receive messages. One
common term in high performance computing is MPI+X which means that the MPI is used
to send and receive messages over the network and X is used for the parallelism on each of
the computational nodes. For example OpenMP is used for shared memory parallelism for
CPUs and CUDA™ or HIP™145 are used for NVIDIA™ or AMD™ acceleration cards,
respectively. Fore more details about CUDA™146 programming, we refer to [85]. However,
for the MPI+X approach the programmer has to deal with different API for the distributed
and shared memory approach. Furthermore, for heterogeneous systems the programmer
has to deal with a third API for the acceleration cards. Sometimes the different APIs
result in duplicated code since one would need to implement the same piece of code using
OpenMP and CUDA for example. Fore more details on how to overcome these issue, we
refer to [8]. One attempt to provide a unified API for various shared parallelism options is
kokkos [18]. Some alternative framework is libfabric [41] which was integrated within HPX.
We could show that using synchronous communication suing MPI was up to a factor of
three slower than asynchronous communication using libfabric [25].

7.1 Caution: Deadlocks
Same as for shared memory parallelism, we have to be careful with dead locks where two
or more nodes exchanging messages and are blocked forever and waiting for each other.
Some potential conditions for deadlocks are mutual exclusion, hold and wait, or circular
wait while sending and receiving messages. To avoid deadlocks there should no be some
cycles in the resource dependency graph, see Figure 7.2. A common thing is to use the
computational node with rank zero as the head node and use it for synchronization and
avoid some circular dependency, see Figure 7.3. For some good definitions of deadlocks, we
refer to [14].
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Listing 7.1: Small Message Passing Interface example to send and receive messages.

1 #include "mpi.h"
2 #include <stdio.h>
3 #include <string.h>
4

5 int main(int argc , char *argv [])
6 {
7 int myrank , message_size =50, tag =42;
8 char message[message_size ];
9 MPI_Status status;

10

11 MPI_Init (&argc , &argv);
12 MPI_Comm_rank(MPI_COMM_WORLD , &myrank);
13

14 if (myrank == 0) {
15 MPI_Recv(message , message_size , MPI_CHAR , 1, tag ,

MPI_COMM_WORLD , &status);
16 printf("received␣\"%s\"\n", message);
17 }
18 else {
19 strcpy(message , "Hello ,␣there");
20 MPI_Send(message , strlen(message)+1, MPI_CHAR , 0, tag

, MPI_COMM_WORLD);
21 }
22 MPI_Finalize ();
23 return 0;
24 }
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8. Linear algebra

For the topic of linear algebra, we refer to [hefferonlinear, 87]. We focus on vector and
matrices and some operations on them, as we need them for example in the finite element
method. Note that we look from the computer science perspective on matrices and vectors
and focus how efficiently use existing libraries in our code. Several highly optimized C++
linear algebra libraries [42, 84, 86, 103] are available. However, the look into the Blaze
library since this library has a HPX backend for parallel computations.

8.1 Blaze library

Blaze is an open-source, high-performance C++ math library for dense and sparse arith-
metic. With its state-of-the-art Smart Expression Template implementation Blaze combines
the elegance and ease of use of a domain-specific language with HPC-grade performance,
making it one of the most intuitive and fastest C++ math libraries available. More details
about the implementation details [51, 52].

8.1.1 Vectors

A n dimensional vector space (or linear space) u is defined as u = (u1,u2, . . . ,un−1,un−2)∈Rn.
In Blaze, a three dimensional vector147 is defined as blaze::DynamicVector<int> c (3
UL);148. Note the Blaze is a template based library as the STL and we have to provide
the data type of the vector in the parenthesizes <int> and in the second parenthesizes
(3UL) the size of the vector. as for the std::vector we can get the size of the vector by
the expression c.size() and to access a value, we use auto value = c[i];. Listing 8.1
shows how to iterate over a Blaze vector using the access operator c[i] and iterators
it-value. For more details on iterators we refer to Section 3.2.4.

For the three dimensional vector space, we look into so some common operations which
are often needed in simulations, e.g. in N-body simulation (Section 11) or peridyanmic
simulation (Section 12). For a vector u = (x,y,z) ∈ R3 the norm or length of the vector
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Listing 8.1: Iterating over a Blaze vector using a for loop with iterators.

1 #include <blaze/Math.h>
2

3 int main()
4 {
5 blaze:: StaticVector <int ,3UL> c{ 4, -2, 5 };
6

7 // Loop over the vector
8 for( size_t i=0UL; i< c.size(); ++i )
9 std::cout << c[i] << std::endl;

10

11 // Iterate over a vector
12 blaze:: CompressedVector <int > d{ 0, 2, 0, 0};
13 for( CompressedVector <int >:: Iterator it=d.begin ();
14 it!=d.end(); ++it )
15 std::cout << it->value () << std::endl;
16

17 }

reads as

|u|=
√

x2 + y2 + z2 (8.1)

and its direction is given as u/|u|. The norm of the vector |c| is computed in Blaze using the
expression const double norm = norm( b );149. The inner product • reads as

u1 •u2 = x1x2 + y1y2 + z1z2. (8.2)

Figure 8.1a shows the angle Θ between the two vectors u1 and u2 defined using the
inner product •. The inner product u1 •u2 is computed in Blaze using the expression
int result2 = inner(v1,v2);150. The cross product × is defined by

u1 ×u2 = |u1||u2|sin(θ)n (8.3)

and its geometric interpretation is sketches in Figure 8.1b. The cross product of the two
vector is the orthogonal vector on the two vectors. In addition, the norm of the cross
product |u1 ×u2| is the are spanned by the two vectors. A more accessible form isc0

c1
c2

=

y2z2 − z1x2
z1x2 − x1z2
x1y2 − y1x2

 . (8.4)

The inner product u1 ×u2 is computed in Blaze using the expression cross(u1,u2);.

8.1.2 Matrices
A matrix A ∈ Rn,m has n rows and m columns

A =

a1,1 . . . a1,m
... . . .

...
an,1 . . . an,m

 (8.5)

and following matrix operations are defined:
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Θ = arccos(u1 •u2/|u1||u2|)

u1

u2

(a) The angle Θ between the two vectors u1 and u2
defined using the inner product •.

u1

u2

u1 ×u2

|u1 ×u2|

Θ

(b) Visualization of the inner product |u1 ×u2| which
is the orthogonal vector on the two others.

Figure 8.1: Geometric interpretation of the inner product • (a) and the cross product × (b).

• Scaling:

2A =

2a1,1 . . . 2a1,m
... . . .

...
2an,1 . . . 2an,m

 (8.6)

• Addition:

A+B =

a1,1 +b1,1 . . . a1,m +b1,m
... . . .

...
an,1 +bn,1 . . . an,m +bn,m

 (8.7)

• Matrix vector multiplication

Av =

a1,1 ∗b1+ . . . +a1,m ∗bn
... . . .

...
an,1 ∗b1+ . . . +an,m ∗bn

 . (8.8)

let us look what kind of matrices are provided by Blaze and how to use them for cal-
culations. Let us start with Blaze’s matrix types151, see Listing 8.2. The first type is
the DynanmicMatrix<T>152 which is a arbitrary sized matrix with dynamically allocated
elements of arbitrary type T. Note that Blaze is a template-based library and the template
type is provided within the first braces. For more details for C++ templates, we refer
to 1.8. In the second pair of braces, the dimension of the n and m are given. Note that the
values are not initialized of this matrix which means that the values can have any value.
For large matrices the DynanmicMatrix<T> matrix is the best option, especially if the
dimensions are not known at compile time. If the matrix is small and the dimensions are
known at compile time, a blaze::StaticMatrix153 matrix should be used. In Line 7 we
define the 3×4 matrix, but do not allocate the memory yet and the matrix has zero rows
and columns. Only after calling the constructor the memory is allocated. Note that the
dimensions of the matrix are provided as template arguments in that case. All matrices are
default row-major matrices and to switch to column-major matrices, the template argument
blaze::columnMajor is available. The last matrix type is the blaze::CompressedMatrix
which is used for sparse matrices154 with only few non-zero entries.
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Listing 8.2: Blaze matrix types.

1 // Definition of a 3x4 matrix
2 // Values are not initialized
3 blaze:: DynamicMatrix <int > A( 3UL , 4UL );
4

5 // Definition of a 3x4 matrix
6 // with 0 rows and columns
7 blaze:: StaticMatrix <int ,3UL ,4UL> A;
8

9 // Definition of column -major matrix
10 // with 0 rows and columns
11 blaze:: DynamicMatrix <double ,blaze:: columnMajor > C;
12

13 // Definition of a 3x4 integral row -major matrix
14 blaze:: CompressedMatrix <int > A( 3UL , 4UL );
15

16 // Definition of a 3x3 identity matrix
17 blaze:: IdentityMatrix <int > A( 3UL );
18

19 // Definition of a 3x5 zero matrix
20 blaze:: ZeroMatrix <int > A( 3UL , 5UL );

These are the main types of matrices provided by the Blaze library. However, there are
some special purpose matrices which are often needed available. One is the identity matrix
blaze::IdentityMatrix with has ones on all diagonal entries and is zero everywhere else.
To have a matrix with zero valued elements, the blaze::ZeroMatrix is used.

For all matrices the size of the matrix size( A ); returns the total amount of elements
(n×m). The number of rows are obtained by M2.rows(); and the number of columns are
obtained by M2.columns();. All matrix operations155 are applied as abs( A ); which
means the absolute value of all matrix elements is computed. Note that the elements of
a Blaze matrix are accessed using different kind of parentheses A(0,0)= 1; sets the first
element of the matrix to one.

One often used task in linear algebra is decomposition of matrices. Blaze implements
following decomposition methods: Cholesky [19], QR/RQ, and QL/LQ. Listing 8.3 shows
how to use LU [15] decomposition method. Note that we do not cover this methods in
this course, but it is an important feature you should know. For more details we refer for
example to [78].

Another important feature is the computation of Eigenvalues and Eigenvectors which
is shown in Listing 8.4. Note that we do not cover this methods in this course, but it is an
important feature you should know. For more details we refer for example to [78].

Application
One application of matrices is communication between a group of people P1, . . . ,P4. Fig-
ure 8.2 shows the communication network of these four people as a directed graph. For
example P1 communications with P2 and P4. One question one can ask, is how long does
it take to transfer a message from P3 to P2. To obtain this information, we can use a
adjacency matrix [11] as in Equation (8.9) where a matrix element a1,2 = 1 means that
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Listing 8.3: Matrix decomposition methods in Blaze

1 blaze:: DynamicMatrix <double ,blaze::rowMajor > A;
2 // ... Resizing and initialization
3

4 blaze:: DynamicMatrix <double ,blaze::rowMajor > L, U, P;
5

6 // LU decomposition of a row -major matrix
7 lu( A, L, U, P );
8

9 assert( A == L * U * P );

Listing 8.4: Matrix decomposition methods in Blaze

1

2 // The symmetric matrix A
3 SymmetricMatrix < DynamicMatrix <double ,rowMajor >>
4 A( 5UL , 5UL );
5 // ... Initialization
6

7 // The vector for the real eigenvalues
8 DynamicVector <double ,columnVector > w( 5UL );
9 // The matrix for the left eigenvectors

10 DynamicMatrix <double ,rowMajor > V( 5UL , 5UL );
11

12 eigen( A, w, V );
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P1P2P3P4

Figure 8.2: Graph of the communication network.

there is an edge in the graph from P1 to P2. By doing this for all people in our group, we
will get this matrix. This matrix will tell us that P1 has contact with P2 and P4, P2 with P3
and so on.

M =


0 1 0 1
0 0 1 0
1 0 0 1
1 1 0 0

 (8.9)

To compute how knows the message after four cycles, we define

M4 = M ·M ·M ·M,

which means for Mn, we have to do n multiplications of M. After the multiplications, we
get following result

M2 =


1 1 1 0
1 0 0 1
1 2 0 1
0 1 1 1


and see that person P3 can send some message to Person P2 in two cycles. For more
applications, we refer to [87].

Exercise 8.1 Transfer the matrix in Equation 8.9 into a Blaze matrix and try to reproduce the
resulting matrix by multiplying the matrix four times. �

8.2 Compiling code using Blaze
To use Blaze, we have to first install the library on our system156. Listing 8.5 shows how
to install Blaze using CMake and Listing 8.6 how to install Blaze manually. Note that you
should check if there is a newer version of Blaze available.

Listing 8.5: Installing Blaze using CMake.

1 tar -xvf blaze -3.6. tar.gz
2 cd blaze -3.6
3 cmake -

DCMAKE_INSTALL_PREFIX =/
home/patrick/blaze .

4 make install

Listing 8.6: Installing Blaze manually.

1 tar -xvf blaze -3.6. tar.gz
2 cd blaze -3.6
3 cp -r ./blaze /home/patrick

/blaze
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After installing Blaze, we can use preferable CMake, see Listing 8.7, or compile the
code by hand, see Listing 8.8. For more details about CMake, we refer to Section 1.7. Note
that we have already installed Blaze on the server and there is no need to install Blaze on
your own device.

Listing 8.7: Compilation using CMake.

1 find_package( blaze )
2 if( blaze_FOUND )
3 add_library(

blaze_target
INTERFACE )

4 target_link_libraries(
blaze_target

5 INTERFACE blaze::
blaze )

6 endif()

Listing 8.8: Manually compilation.

1 g++ -I/home/diehlpk/blaze
BlazeTest.cpp

Currently, we only have compiled Blaze for serial execution. To compile Blaze with C++
11 threads, we have to add following arguments -std=c++11 -DBLAZE_USE_CPP_THREADS
to the compiler and export following environment variable export BLAZE_NUM_THREADS
=4 // Unix systems. For HPX parallelism, we have to add following arguments -
DBLAZE_USE_HPX_THREADS to the compiler and run ./a.out --hpx:threads=4 to use
four threads. Fore more details, we refer to 157.





9. Solvers

Another important task in applied mathematics is to solve linear equations systems.
Before we dig into the numerical and implementation details, we look into one example
we know from our school lessons in mathematics. Figure 9.1 plots the two functions
f1(x1) =−3/2x1+1 and f2(x1) =−2/6x1− 8/6. From a visual perspective one can see that the
intersection of these two functions is at (2,−2). However, for more complex functions or
more degree of freedoms the visual approach can get cumbersome. Another approach is to
formulate the corresponding linear equations systems and solve it to get the intersections.
For the linear equation system, we want to have the both functions in the form 3x1+2x2 = 2
and 2X1 +6x2 =−8 which are just a different way to write f1(x1) and f2(x1). Now we want
to define a matrix M and the right-hand side b to find the solution x as Mx = b. Using the
second form the function representation, we get

Mx = b (9.1)(
3 2
2 6

)(
x1
x2

)
=

(
2
−8

)
. (9.2)

We know from school how to solve the matrix using Gaussian elimination [13]. In Equa-
tion (9.3) the first line is multiplied by two and the second line by three to get the same
factor in the first column. In Equation (9.4) we can subtract the first line from the second
line to get a zero in the second line. In Equation (9.5) we now can get the value for
x2 because we know 2x2 = −28 → x2 = −2. In Equation (9.6) the first line is multiplied
by seven and the second line by two to get the same factor in the second column. In
Equation (9.7) the second row is subtracted from the first one. In Equation (9.8) we now
can get the value for x1 because we know 42x1 = 84 → x2 = 2. Which is the same solution
as visual obtained in Figure 9.1.

Note that one can implement the Gauss elimination, but the theoretical complexity
of this algorithm is O(n3) where n is the number of unknowns [32]. So this algorithm is
feasible for thousands of unknown, but might not scale for millions of unknowns. Fore
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Figure 9.1: Plots of the function f1 and f2 to visually obtain the intersection of the the two lines.

more details about the complexity, we refer to [31]. In that case the so-called iterative
methods are used. We will look into the Conjugate Gradient method in the next section.
For more details about iterative methods we refer to [12, 76].

(
3 2
2 6

)(
x1
x2

)
=

(
2
−8

) ∣∣∣∣·2·3 (9.3)(
6 4
6 18

)(
x1
x2

)
=

(
4

−24

) ∣∣∣∣−R1
(9.4)(

6 4
0 14

)(
x1
x2

)
=

(
4

−28

) ∣∣∣∣→ x2 =−2
(9.5)(

6 4
0 14

)(
x1
x2

)
=

(
4

−28

) ∣∣∣∣·7·2 (9.6)(
42 28
0 28

)(
x1
x2

)
=

(
28
−56

) ∣∣∣∣−R2
(9.7)(

42 0
0 28

)(
x1
x2

)
=

(
42
−56

) ∣∣∣∣→ x1 = 2
(9.8)

9.1 Conjugate Gradient solver
For one examples of iterative solvers, we look into the most popular iterative method
for solving large systems of linear equations. More details about iterative methods [12,
76]. The Conjugate Gradient (CG) solver which was developed by Hestenes and Stiefel in
1952 [48]. The method solves linear equation systems with the form Ax = b. The matrix A
has to be symmetric AT = A and positive-definite xT Ax > 0,∀x > 0.

We use the problem showed in Figure 9.1 and define the system Ax = b as

A =

(
3 2
2 6

)
,x =

(
x1
x2

)
, and b =

(
2
−8

)
.

Since we know that solving that solving the matrix form can be expensive for large amounts
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Figure 9.2: Plot of the quadratic form f (x) (a) and contour plot of the quadratic form f (x) (b).

of unknowns, the quadratic form, which is a function of the vector x

f (x) =
1
2

xT Ax−bT x+ c (9.9)

can be minimized to find the solution for x. Figure 9.2a shows the plot of the quadratic
form and Figure 9.2b shows the contour plot of the quadratic form with the solution (2,−2).
To exemplify the minimization to find the solution, we can place a golf ball at any position
of the bowlish from of the quadratic form and the golf ball will roll to the solution, since
the solution is the minimum of the quadratic form.

Now we want to mimic the metaphor of the rolling golf ball in a numerical sense.
Therefore, we chose an arbitrary point x0 on the quadratic form and intend to slide down
to the bottom of the bowl shape of the quadratic form to find the solution. Thus, we
need to find the direction which decreases most. To find these, we use the gradient of the
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x
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Figure 9.3: Plot of the gradient field f ′(x) with the solution x.

quadratic form

f ′(x) =


∂

∂x1
f (x)

∂

∂x2
f (x)
...

∂

∂xn
f (x)

 . (9.10)

Using the quadratic form, the gradient and applying some mathematics, one can show that
the gradient reads as

f ′(x) =
1
2

AT x+
1
2

Ax−b (9.11)

and for a symmetric matrix A the gradient reads as

f ′(x) = Ax−b. (9.12)

Note that this course focus on the computer science and implementation aspects of the
CG solver and for more details about the mathematics, we refer to [88] where the very
nice example for the introduction of the conjugate gradient method was adapted from.
Figure 9.3 plots the gradient field and one can see that the gradient at the solution x is
zero. Thus, we can minimize the initial guess x0 such that the gradient f ′(x) = 0.

Exercise 9.1 To gain better understanding, we encourage you to follow the calculations in [88]
or even better try to do the altercations on your own and check them later in the reference. �

To implement the metaphor of the rolling golf ball, we use the method of the steepest
decent. In this method, we chose an random initial guess x0 and slide down to the bottom
of the quadratic form f (x) by taking a series of steps x1,x2, . . .. For each step we go to the
direction which f decreases most which is the opposite of f ′(xi) which is − f ′(xi) = b−Axi.

Method of the steepest decent
Before, we look into the method, we have to define two terms, see Figure 9.4. Assume we
know the solution x and we have our initial guess x0 we can define the error e= x0−x or more
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Figure 9.4: Visualization of the error e and the residual r. We have to determine how long we
should go along the residual line within one iteration.

general for the i-th iteration as ei = xi−x. The residual ri = b−Axi =− f ′(xi) which defines
how far we are form the correct value for the right-hand side b. Remember the metaphor
of the golf ball sliding down to the bottom of the bowlish shape. This means for us now
that we have to go along the line r0 to get closer to the bottom. Since we do not have grav-
ity guiding us to the bottom. we have to decide on how long we want to go along the line r0.

So we have to find α for how long we go in the direction of the steepest decent
x1 = x0 +αr0. Figure 9.6a visualized the plane defined by x1 = x0 +αr0 and the quadratic
form f (x). Next, we look at the intersection of the two surfaces which is some parabola,
see Figure 9.6b. Now, we have to find the minimum of the parabola d

dα
f (x0 +αr0) = 0

to determine the optimal value for α. Applying the chain rule results in d
dα

f (x0 +αr0) =
f ′(x0 +αr0)

T r0. This expression is zero if and only if the two vectors are orthogonal. We
can do some calculations

rT
1 r0 = 0 (9.13)

(−Ax1)
T r0 = 0 (9.14)

(−A(x0 +αr0))
T r0 = 0 (9.15)

(b−Ax0)
T r0 −α(Ar0)

T r0 = 0 (9.16)

(b−Ax0)
T r0 = α(Ar0)

T r0 (9.17)

rT
0 r0 = αrT

0 (Ar0) (9.18)

α =
rT

0 r0

rT
0 Ar0

(9.19)

to compute α. Note that this course focus on the computer science and implementa-
tion aspects of the CG solver and for more details about the mathematics, we refer
to [88] where the very nice example for the introduction of the conjugate gradient method
was adapted from. Figure 9.5 shows the first iteration and how long to go along the the
residual line to the next guess of the solution x1 and we clearly see that the gradient is to x0.
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Figure 9.5: first iteration and how long to go along the the residual line to the next guess of the
solution x1 and we clearly see that the gradient is to x0.

Exercise 9.2 To gain better understanding, we encourage you to follow the calculations in [88]
or even better try to do the altercations on your own and check them later in the reference. �

Now, we extend this example to the algorithm to iterate to the solution of the linear
equation system. Figure 9.7 shows the flow chart of the conjugate gradient solver. First,
we have to check if the residual is close to the tolerance ε , if so, we guessed x0 close enough
to the solution. If not, the residual ri is evaluated. Next, we compute αi and the new guess
xi+1. Now, we check if the residual with respect to xi+1 is close enough to the tolerance, if
so, we return the solution. If not, we proceed with the next iteration. Algorithm 1 shows
the pseudo code for the CG method. Here more implementation details as in the flow
chart are provided. Figure 9.8 shows the first five iterations of the CG algorithm with the
initial guess x0 = (−2,−2)T and the solution x5 = (1.93832964,−2.)T . Fore more details on
iterative solver, we refer to [10].
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Figure 9.6: Plot of the two surfaces (a) and resulting parabola of the intersection of these two
surfaces (b).

Exercise 9.3 Implement the conjugate gradient algorithm using Blaze library. This code
produces a matrix A and a vector b, such that the vector x is the solution for Ax = b

1 for(int i=0; i<N; ++i) {
2 A(i,i) = 2.0;
3 b[i] = 1.0*(1+i);
4 x[i] += x[i-1];
5 }

You can use the matrix A and the vector b as the input of your CG implementation and compare
your solution with the vector x to validate your code. You should not use this vector as the input
of the CG algorithm, since your code might stop at step (2) already. �
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Figure 9.7: Flow chart for the Conjugate Gradient method to solve Mx = b.
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Algorithm 1 Implementation of the Conjugate Gradient method with some additions where the
factor β is computed.

r0 = b−Ax0
if r0 < ε then return x0
end if
p0 = r0
k = 0
while true do

αk =
rT

k rk

pT
k Apk

xk+1 = xk +αkpk
rk+1 = rk −αkpk
if rk+1 < ε then

exit loop
end if
βk =

rT
k+1rk+1

rT
k rk

pk+1 = rk+1 +βkpk
k = k+1

end while
return xk+1

−4 −2 0 2 4 6
−6

−4

−2

0

2

4

x
x0

x1

x2

x3

x4

x1

x 2

Figure 9.8: Visualization of the line search for the first five iterations of the Conjugate Gradient
algorithm with the solution x5 = (1.93832964,−2.)T .
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10. Monte-Carlo methods

Monte Carlo methods are computational algorithms which rely on repeated random
sampling to obtain numerical results. The principle is to use randomness to solve the
problem because it is difficult or impossible to use other approaches. When this method
was developed in the 1940s by Ulam and von Neumann they called the method ”Monte
Carlo” in reference to the Monte Carlo Casino in Monaco where Ulam’s uncle gambled.
Today Monte Carlo methods are widely used in the following three problem classes:

• Optimization,
• Numerical integration, and
• Probability distributions.

For the importance of the method we refer to [63], and for more details about Monte Carlo
Methods we refer to [89].

Let us look into the computational aspects of the Monte Carlo methods. Independent
of the problem class, a general pattern is observed:

1. Define the input parameters,
2. Randomly chose input parameters,
3. Do deterministic computations on the inputs,
4. Aggregate the results.

r = 1/2

1

1

Figure 10.1: Sketch of the geometry used within the Monte Carlo method to estimate the value of
π .
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To understand these four steps, we will compute the value of π using a Monte Carlo
method. Figure 10.1 sketches the first two ingredients: a unit square and a circle. First, a
unit square is defined as 1×1, which means it has a side length of 1. The area As is therefore
also 1. Second, the circle with radius r = 1/2 is drawn at the center of the unit square. The
area of the circle is Ac = πr2. Using the radius r = 1/2 the area is Ac = π(1/2)2 = π/4. Now,
since we have defined the area of the circle and the square, we can use them to estimate
the value of π:

Ac = π/4

π = 4Ac

π = 4Ac/As. (10.1)

Note that the operation on the first equation is a multiplication by four. Going from the
second line to the third line, we use the fact that the area of the square is one.

Now, we can estimate π by the general pattern described above.
• Define the input parameters:
A coordinate (x,y) ∈ R in the domain of the unit square [0,1]× [0,1]

• Randomly chose input parameters:
We randomly draw N values for x and y in the range of [0,1]

• Do deterministic computations on the inputs:
We must validate if the coordinate (x,y) is inside the circle or not with the inequality
x2 + y2 ≤ 1. If the coordinate is within the circle, we increment NC.

• Aggregate the results:
We compute π ≈ 4Nc/N

Figure 10.2 shows the flow chart of the algorithm for estimating π using the Monte
Carlo method. First, the decision if the current draw of the random number is less than
the desired total amount of random numbers N. If we have not yet drawn enough random
numbers, we have to guess two random numbers x and y (see Section 2.2 for how to generate
random numbers in C++). Next, we have to check if the drawn coordinate (x,y) is within
the circle. If so, we increment the count of the number of points that have landed within
the circle Nc. We have to repeat these steps until i > N. Once we have drawn enough
random numbers, we can compute π ≈ 4Nc/N and finish the program.

Next,let us ask the question, ”What is a good choice for N to get a good approximation
of pi?” Figure 10.3 shows the distribution of the point inside the circle (red) and outside
of the circle (blue) for N = 10, N = 100, and N = 1000 random numbers. One can see
that a certain amount of random numbers is needed to have enough samples inside and
outside of the circle. Figure 10.4 shows the absolute error in percent for various amounts
of random numbers. One can see that with a thousand random numbers the accuracy is
quite reasonable.

Exercise 10.1 Make a list of which C++ features we need to implement the flow chart in
Figure 10.2. �

Exercise 10.2 Implement the Algorithm in Figure 10.2 using the random numbers in Section 2.2.
�
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Figure 10.2: Flow chart for the Monte Carlo method to estimate π .

(a) N = 10 (b) N = 100 (c) N = 1000

Figure 10.3: Distribution of the points inside the circle (red) and outside of the circle (blue) for
N = 10, N = 100, and N = 1000 random numbers.
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Figure 10.4: The absolute error for various amounts of random numbers. One can see that with a
thousand random numbers the accuracy is quite reasonable.



11. N-body problems

The N-body problem is the physics problem of predicting the individual motions of mem-
bers of a group of celestial objects interacting with each other gravitational. We want
to predict the interactive forces and the motion of all celestial bodies at all future times.
We assume that we know their orbital properties, e.g. the initial positions, velocity, and time.

Before we look into the N-body problem, let us step back and look at the two-body
problem. Let us look at two gravitational bodies with the masses mi and m j and the
positions ri,r j ∈ R3. To define the equation of motion, we refer to the following definitions:

1. The Law of Gravitation:
The force of mi acting on m j is

Fi j = Gmim j
r j − r2

|r1 − ri|3
(SeeFigure 11.1) (11.1)

The universal constant of gravitation G was estimated as 6.67408 ·10−11m3kg−1s−2 in
2014 [72].

2. Velocity and acceleration:
(a) The velocity of mi is

vi =
dri

dt
(11.2)

(b) The acceleration of mi is

ai =
dvi

dt
(11.3)

For more details about vectors and basic vector operations, we refer to Section 8.1.1.
3. The second Law of Mechanics: (Force is equal to mass times acceleration)

F = ma (11.4)
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m1 m2
F1 F2

Figure 11.1: Sketch of the two celestial bodies with the masses m1 and m2 and the gravitational
interaction forces F1 and F1. Equation 11.8 shows the equation of motion for the two-body system.

With these three definitions, we can derive the equation of motion for the first body as
follows:

Fi j = Gmim j
r j − ri

|r j − ri|3
(11.5)

miai = Gmim j
r j − ri

|ri − r j|3
(11.6)

dvi

dt
= Gm j

r j − ri

|r j − ri|3
(11.7)

d2ri

dt2 = Gm j
r j − ri

|r j − ri|3
(11.8)

To get from Equation (11.5) to Equation (11.6), we substitute Fi j with miai using Equa-
tion 11.4. From Equation (11.6) to Equation (11.7), we divide by mi and replace ai according
to Equation 11.3. From Equation (11.7) to Equation (11.8), we substitute Equation 11.2.
Note that we used Newton’s law of universal gravitation [74].

Now we formulate the problem for n bodies, assuming that the force at one body is
equal to the sum over all bodies, excepting itself.

Fi =
n

∑
j=1,i6= j

Fi j =
n

∑
j=1,,i 6= j

Gm j
r j − ri

|r j − ri|3
. (11.9)

These are the laws of conservation for the N-body problem:
1. Linear Momentum:

n
∑

i=1
mivi = M0

2. Center of Mass:
n
∑

i=1
miri = M0t +M1

3. Angular Momentum:
n
∑

i=1
mi(ri ×vi) = c

4. Energy: T-U=h with
T = 1

2

n
∑

i=1
mivi ◦vi,U =

n
∑

i=1

n
∑
j=1

G mim j
|ri−r j|

These laws are just shown for completeness. For more details about the theory and the
derivations, we refer to [1, 2]. This text focuses on the implementation details of the
N-body problem with C++.

11.1 Algorithm
Figure 11.2 shows the three steps for the N-body simulation. In this section we focus on
the implementation details of the first two steps. Equation 11.9 shows how to compute the
force for one celestial object. Recall that the ∑ translates to a for loop as we discussed in
Section 1.4.1. To compute the forces of all bodies, the so-called nested for loop or direct
sum is used. Listing 11.1 shows the concept of the direct sum which is robust, accurate,
and completely general. The computational costs per body are O(n) and the computational
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Compute the forces

Update the positions

Collect statistical information

Figure 11.2: The three steps of the algorithm for the N-body simulation. First, the forces for all
objects are computed using Equation 11.9. Second, the updated positions are computed using
Equation 11.13 and Equation 11.14. Third, the statistical information is evaluated.

Listing 11.1: Example for the direct sum.

1 for(size_t i = 0; i < bodies.size(); i++)
2 for(size_t j = 0; j < bodies.size(); j++)
3 if ( i != j )
4 // Compute forces

costs for all bodies are O(n2). The symbol O is the so-called ”Big O” notation, which
we use to describe algorithm run time or space requirement growth as the input size
grows. In our case the computational cost per body increases linearly, since we have to
compute the force n−1 times for all particles. The Big O notation O(n) means that the
total computational cost for n computations is less than or equal to n. These symbols are
defined in the Bachmann–Landau notation [7, 61, 66]. For all bodies the computational
cost increases to the power of two since we have to compute the forces n−1 times for all n
bodies. The direct sum is feasible for a small number of celestial objects, but for larger
numbers the tree-based codes or the Barnes-Hut method [9] reduce the computational
costs to O(n log(n)).

For the second step of the algorithm, we need to update the positions for the evolution
of the system over the time T . For the discretization in time, we define the following
quantities:

• ∆t the uniform time step size
• t0 the beginning of the evolution
• T the final time of the evolution
• k the time steps such that k∆t = T .

Next, we need to compute the derivatives to obtain the velocity and the acceleration of
each celestial object. One numerical method to approximate the derivation is given by

u′(x)≈ u(x+h)−u(x)
h

(11.10)

which is the finite difference method. Figure 11.3 sketches the principle of the finite
difference method. For a sufficiently small h, we can approximate the derivation at the
coordinate x. For example: Choosing h = 1 and x = 3, we get u′(x) = (4−3)/1 = 1 which aligns
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Figure 11.3: The principle of the finite difference method. For a sufficiently small h, we can
approximate the derivation at the coordinate x. For example: Choosing h = 1 and x = 3, we get
u′(x) = (4−3)/1 = 1 which aligns with u′(x) = 1 using the analytic derivation of u(x). Now we can
use the Euler method to compute the updated positions at time tk+1.

with u′(x) = 1 using the analytic derivation of u(x). Now we can use the Euler method to
compute the updated positions at time tk+1. First we approximate the velocity using the
finite difference scheme

vi(tk) =
dri

dt
≈ ri(tk+1)− ri(tk)

∆t
. (11.11)

We do the same for the acceleration

ai(tk) =
dvi

dt
≈ vi(tk)−vi(tk −1)

∆t
=

Fi

mi
(11.12)

from Equation 11.4 we get ai = Fi/mi. More details [30, 68, 96]. With the above approxima-
tions the velocity is computed as

vi(tk) = vi(tk−1)+∆t
Fi

mi
(11.13)

using Equation (11.12) and the fact that the finite difference approximation of the acceler-
ation is equal to Fi/mi. Finally, the updated position is computed as

ri(tk+1) = rtk +∆tvi(tk) (11.14)

using Equation (11.11). Note that we used easy methods to update the positions, but more
sophisticated methods, e.g. Crank–Nicolson method [24], are available

Exercise 11.1 Look at the equations in this section and try to derive the Equation 11.13 and
Equation 11.13 on your own. �

Exercise 11.2 Implement the N-body problem using the template code158 on GitHub. �



12. Peridynamics

Peridynamic, a alternative formulation of continuum mechanics with a focus on discontinu-
ous displacement as they arise in fracture mechanics, was introduced by Silling in 2000 [90,
91]. Models crack and fractures on a mesoscopic scale using Newton’s second law (force
equals mass times acceleration)

F = m ·a = m · Ẍ . (12.1)

12.1 Brief introduction in classical continuum mechanics
We briefly look into the ingredients of classical continuum mechanics which are needed to
introduce peridynamics. In Figure 12.1 on the lift-hand side, we see the continuum in the
reference configuration Ω0 ⊂R3 which is the state where we have no internal forces and we
are in the equilibrium. We denote these positions with capitalized X ∈ R3 to distinguished
with the new position after the deformation φ : Ω0 → R3. The deformation implied for
example by some external forces moves the continuum from the reference configuration Ω0
to the current configuration Ω(t). The new position of X is now x(t,X).

Let us look more closely in the definitions above. The deformation φ : [0,T ]×R3 → R3

of a material point X in the reference configuration Ω0 to the so-called current configuration
Ω(t) is given by

φ(t,X) := id(X)+u(t,X) = x(t,X),

where u : [0,T ]×R3 → R3 refers to the displacement

u(t,X) := x(t,X)−X .

The stretch s : [0,T ]×R3 ×R3 → R3 between the material point X and the material point
X ′ after the deformation φ in the configuration Ω(t) is defined by

s(t,X ,X ′) := φ(t,X ′)−φ(t,X) .
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Ω0

X

Ω(t)

x(t,X)

φ : Ω0 → R3

Figure 12.1: The continuum in the reference configuration Ω0 and after the deformation φ : Ω0 →R3

with det(grad φ)> 0 in the current configuration Ω(t) at time t.

We just covered the prerequisites of classical continuum mechanics which are necessary to
introduce the peridynamic theory. For more details, we refer to [43, 69].

12.2 Brief introduction in bond-based peridynamics
We can use Newton;s second law (force equals mass times acceleration) and formulate it as

ρ(X)a(t,X) :=
∫

Bδ (X)

f
(
t,x(t,X ′)− x(t,X),X ′−X

)
dX ′+b(t,X) , (12.2)

to compute the acceleration a : [0,T ]×R3 → R3 of a material point at position X at time t.
With the pair-wise force function f : [0,T ]×R3 ×R3 → R3, the mass density ρ(X), and the
external force b : [0,T ]×R3 → R3. Following assumptions are made

1. The medium is continuous (equal to a continuous mass density field exists)
2. Internal forces are contact forces (equal to that material points only interact if they

are separated by zero distance.
3. Conservation laws of mechanics apply

(a) Conservation of mass
(b) Conservation of linear momentum

f (t,−(x(t,X ′)− x(t,X)),−(X ′−X)) =− f (t,x(t,X ′)− x(t,X),X ′−X)

(c) Conservation of angular momentum

(x(t,X ′)− x(t,X)+X ′−X)× f
(
t,x(t,X ′)− x(t,X),X ′−X

)
= 0

12.2.1 Material model
There are several material models available, however, we look into the Prototype Microe-
lastic Brittle (PMB) model, since it was one of the first material models. In this model
the assumption is made that the pair-wise force f only depends on the relative normalized
bond stretch s : [0,T ]×R3 ×R3 → R

s(t,x(t,X ′)− x(t,X),X ′−X) := (12.3)
||x(t,X ′)− x(t,X))||− ||X ′−X ||

||X ′−X ||
, (12.4)

where X ′−X is the vector between the material points in the reference configuration Ω0 and
x(t,X ′)− x(t,X) is the vector between the material point in the current configuration Ω(t).
As a material property, the so-called stiffness constant c is introduced and the pair-wise
force function reads as

f (t,x(t,X ′)− x(t,X),X ′−X) := cs(t,x(t,X ′)− x(t,X),X ′−X)
x(t,X ′)− x(t,X)

‖x(t,X ′)− x(t,X)‖
. (12.5)
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The pair-wise force function is shown in Figure 12.2a. Which is a linear line with the
slope blue. Note that we do not have introduced damage to the material model yet.
Therefore, a scalar valued history dependent function µ : [0,T ]×R3 ×R3 → N is added to
the computation of the pair-wise force

f (t,x(t,X ′)− x(t,X),X ′−X) :=

cs(t,x(t,X ′)− x(t,X),X ′−X)

µ(t,x(t,X ′)− x(t,X),X ′−X)
x(t,X ′)− x(t,X)

‖x(t,X ′)− x(t,X)‖
. (12.6)

with

µ(t,x(t,X ′)− x(t,X),X ′−X) :=

{
1 s(t,x(t,X ′)− x(t,X),X ′−X)< sc

0 otherwise
(12.7)

The pair-wise force function with the damage is incorporated is shown in Figure 12.2b. With
the scalar valued history dependent function µ the notion of damage d(t,X) : [0,T ]×R3 →R
can be introduced via

d(t,X) := 1−

∫
Bδ (X)

µ(t,x(t,X ′)− x(t,X),X ′−X)dX ′

∫
Bδ (X)

dX ′
. (12.8)

To express damage in words, it is the ratio of the active (non-broken) bonds and the
amount of bonds in the reference configuration within the neighborhood. Note that we
have two material properties the stuffiness constant c and the critical stretch sc. We can
related these to continuum mechanics as

c =
18K
πδ

and sc =
5

12

√
KIc

K2δ
(12.9)

With K is the bulk modulus and KIc is the critical stress intensity factor.

12.3 Discretization
To discretize the peridynamic equation of motion (12.2), the so-called EMU nodal dis-
cretization (EMU ND) [77] is used. All material points X are placed at the nodes
X := {Xi ∈ R3|i = 1, . . . ,n} of a regular grid in the reference configuration Ω0, see Fig-
ure 12.3. We assume that the discrete nodal spacing ∆x between Xi and X j is defined
as ∆x = ‖X j −Xi‖ and is constant in all directions. For all material points at the nodes
X := {Xi ∈ R3|i = 1, . . . ,n} a surrounding volume V := { Vi ∈ R|i = 1, . . . ,n} is assumed.
These volumes are non overlapping Vi ∩V j = /0 and recover the volume of the volume of
the reference configuration ∑

n
i=1 Vi = VΩ0 . Using this assumptions the integral sign in the

peridynamic equation of motion is replaced by a sum and reads as

ρ(Xi)a(t,Xi) = ∑
X j∈Bδ (Xi)

f (t,x(t,X j)− x(t,Xi),X j −Xi)dV j +b(t,Xi). (12.10)

The discrete interaction zone Bδ (Xi) of Xi is given by Bδ (Xi) := {X j| ||X j −Xi|| ≤ δ} which
means that all the materials point within the circle in Figure 12.3 exchange pair-wise forces
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(a) Sketch of the pair-wise linear valued force
function f with the stiffness constant c as slope.
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(b) Sketch of the pair-wise linear valued force
function f with the stiffness constant c as slope
and the critical bond stretch sc.

Figure 12.2: Linear elastic pair-wise force (a) and the pair-wise force function with the notation of
damage (b)
.

Xi

Figure 12.3: Discrete mesh node Xi on the equidistant grid and its interaction zone Bδ (Xi) :=
{X j| ||X j −Xi|| ≤ δ}.

with the discrete material point Xi.

From the computational aspects, we have to store the discrete interaction zone Bδ (Xi)
for all discrete material points. To do so, we use two nested std::vector data structures.
For each discrete node we have std::vector<size_t> to store the index of the neighboring
discrete nodes. Since we have to store this information for all discrete nodes, we have
a nested vector std::vector<std::vector<size_t>>. Now, we can use a direct sum,
see Listing 11.1, to compute the acceleration a for all our nodes. Note that we need the
displacement u(t,X) to compute the pair-wise force f (t,x(t,X j)− x(t,Xi),X j −Xi). We use a
central difference scheme

u(t +1,X) = 2u(t,X)−u(t −1,X)+∆t2

(
∑

X j∈Bδ (Xi)

f (t,Xi,X j)+b(t,X)

)
(12.11)

to compute the actual displacement x(t,X) := x(t −1,X)+u(t,X). Note that for the first
time step, we assume x(t −1,Xi) = Xi and u(t −1,Xi) = u(t −1,Xi) = 0 as the initial values.
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Read the input files

Compute the neighborhoods Bδ (12.10)

tn < T Finished

Compute the pair-wise force f (12.10)

Add external force b
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Figure 12.4: Flow chart for the Peridynamic simulation.

12.4 Algorithm
Figure 12.4 shows the flow chart for the peridynamic simulation. The first step is to
read the input file to obtain the material and discretization properties. Next, the discrete
neighborhood for each of the nodes in computed and the neighbors are stored in a nested
vector std::vector<std::vector<size_t>>. After these steps, the computation is started
using a loop. Note that in the first computation the pair-wise forces F are zero, since
no external force b was applied. In the next step, the external force b is applied and the
acceleration a is computed. Note by adding the external force to the nodes, the acceleration
of the nodes is not zero anymore. Now, the displacement u is computed and the positions
are updated. Last, the time step and time is updated.
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13. One-dimensional heat equation

For the example for distributed computing, we look into the one-dimensional heat equation.
The heat equation reads as

∂u
∂ t

= α

(
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)
(13.1)

where α is the diffusivity of the material. The heat equation computes the flow of heat in a
homogeneous and isotropic medium. For more details about the mathematics and physics
of the heat equation, we refer to [17]. For the distributed computing example, we look into
the easiest case which is the one-dimensional heat equation. We assume a one-dimensional
bar of length L and Eqiation 13.1 reads as

∂u
∂ t

= α
∂ 2u
∂x2 , 0 ≤ x ≤ L, t > 0. (13.2)

To solve this one-dimensional heat equation, boundary conditions are required

• u(0, t) = u0
• u(L, t) = uL

• u(x,0) = f0(x).

First, a value at the beginning of the bar and at the end of the bar are given which are
constant over time. For all other positions within the bar we apply an arbitrary value at
time t equal zero. However, to solve the heat equation from the numerical perspective,
we have to discretize the equation in space and time. For the discretization in space a
so-called discrete mesh

xi = (i−1)h, i = 1,2, . . . ,N

where N is the total number of nodes and h is given by h = L/N −1, see Figure 13.1. The
next step is to the discretization in time. Therefore, the approximation of the the second
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Figure 13.1: Discretization in space using a so–called discrete mesh for the one-dimensional heat
equation.
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Figure 13.2: Scheme for the discretization in space and time. At time t = 0 the boundary conditions
are applied at the squares. We use the central difference scheme to compute the new values at time
ti+1 using the values from the previous time step. The central difference scheme is shown for the
discrete mesh node x4.

derivative ∂ 2u/∂x2 in Equation 13.2 using a central difference scheme. The first derivation
reads as

∂u
∂x

≈ ui+1 −ui

2h

and the second derivation reads as

∂u
∂x2 ≈ ui−1 −2ui +ui+1

2h
.

Meaning we can approximate the second derivation at position xi using the left neighbor
xi−1 and the right neighbor xi+1. Note that we do not have the left neighbor at x0 and the
right neighbor at xL. Here, some special treatment is needed to compute the approximation
of the derivation. To avoid this special treatment, we assume that we have a ring instead of
a bar in our example. For more details about the finite difference method, we refer to [68,
96]. Now, we combine the discretiztion on time and space, see Figure 13.2, to compute the
heat transfer for the next time step. At time t = 0 we have applied the boundary conditions
on the blue squares. At time ti we compute the new value for the node x4 at time ti+1 using
its neighbor’s values at time ti using the central difference scheme.

13.1 Serial implementation details
First, a function heat which implements the central difference scheme in Equation 13.2,
see Lines 10–13 in Listing 13.1. Note that for simplicity we renamed α to k. We use the
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Figure 13.3: Sketch for swapping the partition to reuse the partition vectors to compute the new
time step.

keyword static in front of the return type double. We will discuss later why we need to
use the static keyword. The next step is to look into the data structure (partition) to
store the heat values. For the serial implementation the partition is defined as typedef
double partition; since we store one double value per discrete mesh node. For storing
all heat values per discrete mesh node a typedef std::vector<partition> space; is
declared. For the central difference scheme we need the heat values from the previous time
step to compute the heat values for the current time step. So we need to have to space
objects for both time steps, see Line 19 in Listing 13.1. In Line 20–12 the size of the vector
is set to the number of discrete mesh nodes nx. Since we have a nested vector U[t][i] the
first index is the time step t and the second one the index i. Thus to set the boundary
conditions in Line 24–25 the first argument is zero for t = 0 and we iterate over all discrete
mesh nodes.

Since we have the initial setup, we can iterate over the time steps using the for loop in
Line 28. Something tricky happens in Line 30–31 to swap the space for the current time
step and the previous time step. Figure 13.3 shows how to swap the space for each time
step. For the initial time t = 0 the space U[0] holds the current heat values and the space
U[1] holds the heat values for the next time step t = 1. To compute the heat values for
the time step t = 2 the space U[0] is reused to store the next heat values. For swapping
the spaces, we use t % 2 to get the current space and (t+1) % 2 to get the space for the
new heat values. Since we assume a ring, the computation of the first and last elements
need a special treatment and all other points are computed the same. The complete source
code for the serial example is available here159. Choosing following boundary conditions

u(x,0) = f (i,0), with f (0, i) = i for i = 1,2, . . . ,N

and a heat transfer coefficient k = 0.5, time step size dt = 1., grid spacing h = 1., and
time steps nt = 45 results in the initial conditions, See Figure 13.4a, and the solution, see
Figure 13.4b.

13.1.1 Adding grain size control
In Figure 13.7 we have seen that we got some speedup with the asynchronous implementa-
tion discussed in Section 4.2.1. However, in same cases the granularity (the amount of work)
for each core was too small, since we always used one grid point wrapped in a future. Now,
we want to extend the code to use partitions of grid nodes, see Figure ??. In this example
we have a grid with nine nodes and we split them into three partitions, which means that
each core has to compute the new values for three elements instead of for one element.
The first, thing we need to do is to update the struct participation, see Listing 13.2.
In Line 4 a std::vector<double> is added to store the partition. In Line 8 a constructor
is added to initialize the vector data_(size) with the provided size_t size. In Line 12
a second constructor is added to fill the partition with the initial values and the boundary
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Listing 13.1: Serial implementation of the one-dimensional heat equation

1 struct stepper
2 {
3 // Our partition type
4 typedef double partition;
5

6 // Our data for one time step
7 typedef std::vector <partition > space;
8

9 // Our operator
10 static double heat(double left , double middle , double

right)
11 {
12 return middle + (k*dt/(dx*dx)) * (left - 2* middle +

right);
13 }
14

15 // do all the work on ’nx’ data points for ’nt’ time
steps

16 space do_work(std:: size_t nx , std:: size_t nt)
17 {
18 // U[t][i] is the state of position i at time t.
19 std::vector <space > U(2);
20 for (space& s : U)
21 s.resize(nx);
22

23 // Initial conditions: f(0, i) = i
24 for (std:: size_t i = 0; i != nx; ++i)
25 U[0][i] = double(i);
26

27 // Actual time step loop
28 for (std:: size_t t = 0; t != nt; ++t)
29 {
30 space const& current = U[t % 2];
31 space& next = U[(t + 1) % 2];
32

33 next [0] = heat(current[nx -1], current [0], current
[1]);

34

35 for (std:: size_t i = 1; i != nx -1; ++i)
36 next[i] = heat(current[i-1], current[i],

current[i+1]);
37

38 next[nx -1] = heat(current[nx -2], current[nx -1],
current [0]);

39 }
40

41 // Return the solution at time -step ’nt ’.
42 return U[nt % 2];
43 }
44 };
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(a) Discrete nodes colored with their initial heat
value prescribed by the boundary conditions.
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(b) Discrete nodes colored with final heat value
at the final time t = 45.

Figure 13.4: The initial heat values prescribed by the boundary conditions (a) and the final solution
after 45 time steps (b).
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Figure 13.5: Splitting the one-dimensional grid with nine grid nodes (x1, . . . ,x9) into three partitions
(n1,n2,n3) to control the grain size.

values. Since the partition vector is declared as private, we use operator overloading in
Line 21 and Line 25 to access the elements of the partition. For more details about opera-
tion overloading, see Section 1.5.1. In Line 29 a function to obtain the partition size is added.

For the swapping scheme between the time steps for the computation of the temperature,
see Figure 13.3, some small notification is applied as well. Figure 13.6 shows the principle of
the swapping scheme using partitions. The fundamental principle is the same and we have
the two space U to swap between the current time step and the future time step. However,
with introducing the partitions, we have the two spaces per partition. These modifications
are shown in Listing 13.3. In Line 4 the partition is now of the type partition_data,
see Listing 13.2. In Line 10, each of the space vector’s size is set to the amount of partitions
np. In Line 14, we access the space vector U[0] for the first time step and with U[0][i]
each partition is accessed. We call the constructor for each partition and assign the initial
values and boundary conditions. The full code is available on GitHub160.

x1 x2 x3 x4
U[0][0]

U[1][0]

U[0][0]

x1 x2 x3 x4
U[0][1]

U[1][1]

U[0][1]

t=1

t=2

t=3

Figure 13.6: Swapping between the partitions using the two spaces U. Note that each partition n
has his dedicated spaces, however, the fundamental principle stays the same.
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Listing 13.2: Serial implementation of the one-dimensional heat equation with grain size control.

1 struct partition_data
2 {
3

4

5 private:
6 std::vector <double > data_;
7

8 public:
9

10 // Constructor
11 partition_data(std:: size_t size = 0)
12 : data_(size)
13 {}
14

15 partition_data(std:: size_t size , double int_value)
16 : data_(size)
17 {
18 double base_value =
19 double(int_value * size);
20 for (std:: size_t i = 0; i != size; ++i)
21 data_[i] = base_value + double(i);
22 }
23

24 // Operator overloading
25 double& operator []( std:: size_t idx) {
26 return data_[idx];
27 }
28

29 double operator []( std:: size_t idx) const {
30 return data_[idx];
31 }
32

33 // Util
34 std:: size_t size() const {
35 return data_.size();
36 }
37 };
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Listing 13.3: Serial implementation of the one-dimensional heat equation with grain size control.

1 class stepper
2 {
3 // Our data for one time step
4 typedef partition_data partition;
5 typedef std::vector <partition > space;
6

7 std::vector <space > U(2);
8 for (space& s: U)
9 // np is the number of partitions

10 s.resize(np);
11

12 // Initial conditions: f(0, i) = i
13 for (std:: size_t i = 0; i != np; ++i)
14 U[0][i] = partition_data(nx , double(i));
15

16 // Return the solution at time -step ’nt ’.
17 return U[nt % 2];
18

19 }

13.2 Futurized implementation

HPX provides additional features for asynchronous programming which are not yet in the
C++ standard. In this section, we look into these. Therefore, we look into the struct
stepper of the serial version, see Listing 13.1, and add futures to have asynchronous

execution of the solver for the one-dimensional heat equation. Listing 13.4 shows the new
struct stepper using futures. The first change is that the type partition, which was
a simple double value before, is replaced by hpx::shared_future. Note that the hpx::
lcos::future has the exclusive ownership model and if the future is out of scope, it will
be not available anymore. To avoid the out of scope situation, the hpx::shared_future
has the reference counting ownership model. Here, all references to the object are counted
and the object solely goes out of scope if there are zero references. These concepts are
equal to std::unique_ptr161 and std::shared_ptr162.

The first feature is the keyword hpx::make_ready_future163, see Line 22 of List-
ing 13.4. Since the partition is now a hpx::shared_future the boundary conditions
and initial conditions have to be a future too. However, since these are constant values
and no computation is needed the future is immediately ready. Since HPX does not know
that there is no execution, we can use a hpx::make_ready_future ready to propagate this
information to the asynchronous execution tree.

Second, since we use futures for the partition, but the function to evaluate the central
difference heat(double left, double middle, double right) takes double values as
arguments. We either have to change the function to take futures as its arguments and call
the .get() function inside. To avoid these two things, HPX provides the so-called unwrap-
ping of a function with the keyword hpx::util::unwrapping. In Line 24 of Listing 13.4
the function heat is unwrapped and the function Op takes futures as its arguments. So In
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Line 37 of the hpx::launch::async we can pass the current elements which are of the
type hpx::shared_future<double> to a function which assumes double values.

Third, HPX has the keyword hpx::dataflow to use unwrapping for the combination of
hpx::when_all and .then. Imagine you have a vector std::vector<hpx::lcos::future
<int>> futures; and pass it to hpx::when_all(futures).then([](auto&& f){}); the
vector futures will be wrapped in the future auto&& f. SO if we want to access the ele-
ments of the vector we have to call f.get(). An easier approach is to use hpx::dataflow
as it is done in Line 36 in Listing 13.4. The first argument is hpx::launch::async to
launch asynchronous and a future is returned. Another possibility is to use hpx::launch::
sync to launch synchronous. The second argument is the unwrapped function of the heat
function, see Line 24. The last three remaining arguments are the futures with the values
for the central difference scheme evaluation. Before we can return the current solution, we
have to call hpx::when_all to synchronous all futures of the current solution.

Figure 13.7a shows the execution time of the serial vs the asynchronous implementation
for 1 CPU. We clearly see that the execution time even for one CPU is lower. Figure 13.7b
shows the execution time for various amount of CPUs for the asynchronous implementation.
Here, we can see that for enough grid points the we get some benefit for adding more
CPUs which means we have to have enough work to keep the CPUs busy. To obtain better
results, we have to extend the code to control its granularity.

13.2.1 Adding grain size control
In Section 13.1.1 the control of the granularity was added to the serial implementation of
the one-dimensional heat equation. here, we extend the code with the futurization with the
grain size control. First, we extend the struct partion_data, see Listing 13.5. In Line 39
we change the class members to a double [] array and we introduce size_t size_ to the
store the size of the partition. Note that we use a smart pointer std::unique_ptr to store
the double [] array. The shared pointer is essential since we need to use the reference
counter model to keep track that the array does not go out of scope. For more details
about smart pointer we refer to Section 1.11.1. In the constructor, we use the expression
new double [size] to allocate a double array od the size size. Fore more details about
the new expression, we refer to Section 1.10.1.

By adding the grain size control to futurized implementation, we see some performance
improvement compared to the previous implementation, see Figure 13.7. In Figure 13.8
the number of discrete nodes is fixed to 1000000 and the grain size varies which means
the amount of point inside a partition change. For using one and two CPUs, we see the
typical curve for the grain size control. Using a grain size of one results in the largest
execution time. First, while increasing the grain size the execution times goes down until
the so-called sweet spot. At the sweet spot the execution is as its minimum and decreases
after. Here, it is important to find this sweet spot which depends on various factors, e.g.
the computation, the algorithm, and the architecture of the hardware. So for each amount
of discrete nodes one has to find the sweet spot.

13.3 Distributed implementation
13.3.1 Improving the exchange of partitions
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Listing 13.4: Futurized version of the one-dimensional heat equation.

1 struct stepper
2 {
3 // Our partition type
4 typedef hpx:: shared_future <double > partition;
5

6 // Our data for one time step
7 typedef std::vector <partition > space;
8

9 // do all the work on ’nx’ data points for ’nt’ time
steps

10 hpx::future <space > do_work(std:: size_t nx, std:: size_t nt
)

11 {
12 using hpx:: dataflow;
13 using hpx::util:: unwrapping;
14

15 // U[t][i] is the state of position i at time t.
16 std::vector <space > U(2);
17 for (space& s : U)
18 s.resize(nx);
19

20 // Initial conditions: f(0, i) = i
21 for (std:: size_t i = 0; i != nx; ++i)
22 U[0][i] = hpx:: make_ready_future(double(i));
23

24 auto Op = unwrapping (& stepper ::heat);
25

26 // Actual time step loop
27 for (std:: size_t t = 0; t != nt; ++t)
28 {
29 space const& current = U[t % 2];
30 space& next = U[(t + 1) % 2];
31

32 // WHEN U[t][i-1], U[t][i], and U[t][i+1] have
been computed , THEN we

33 // can compute U[t+1][i]
34 for (std:: size_t i = 0; i != nx; ++i)
35 {
36 next[i] = dataflow(
37 hpx:: launch ::async , Op,
38 current[idx(i, -1, nx)], current[i],

current[idx(i, +1, nx)]
39 );
40 }
41 }
42

43 // Return the solution at time -step ’nt ’.
44 return hpx:: when_all(U[nt % 2]);
45 }
46 };
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Figure 13.7: Comparison of the serial vs asynchronous execution (a) and speed-up for various
amount of CPUs (b).
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Listing 13.5: Adding the grain size control the futurized one-dimensional heat equation.

1 struct partition_data
2 {
3 public:
4 explicit partition_data(std:: size_t size)
5 : data_(new double[size])
6 , size_(size)
7 {
8 }
9

10 partition_data(std:: size_t size , double initial_value)
11 : data_(new double[size])
12 , size_(size)
13 {
14 double base_value = double(initial_value * size);
15 for (std:: size_t i = 0; i != size; ++i)
16 data_[i] = base_value + double(i);
17 }
18

19 partition_data(partition_data && other) noexcept
20 : data_(std::move(other.data_))
21 , size_(other.size_)
22 {
23 }
24

25 double& operator []( std:: size_t idx)
26 {
27 return data_[idx];
28 }
29 double operator []( std:: size_t idx) const
30 {
31 return data_[idx];
32 }
33

34 std:: size_t size() const
35 {
36 return size_;
37 }
38

39 private:
40 std::unique_ptr <double[]> data_;
41 std:: size_t size_;
42 };
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Notes
158https://github.com/diehlpkteaching/N-Body
159https://github.com/STEllAR-GROUP/hpx/blob/master/examples/1d_stencil/1d_stencil_1.cpp
160https://github.com/STEllAR-GROUP/hpx/blob/master/examples/1d_stencil/1d_stencil_3.cpp
161https://en.cppreference.com/w/cpp/memory/unique_ptr
162https://en.cppreference.com/w/cpp/memory/shared_ptr
163https://hpx-docs.stellar-group.org/latest/html/api.html?highlight=make_ready_future
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12 99 37

Figure 13.9: A sketch of the linked-list containing three elements. The first pointer points to the
second element of the list, the pointer of the second element points to the third element of the list,
and the last pointer points to nowhere. This indicates that the end of the list is reached.

This course does not go deep into pointers, since I believe that one should avoid to
use pointers a much as possible and use the C++ standard library as much as possible.
For more details about the C++ standard library, we refer to Section 3. In this section,
we looked into the containers, see Section 3.2, to store values in a std::vector or a
std::list. In this section, we look into the implementation of the std::list where
pointers are heavily used. We do this for two reasons: 1) To showcase why one should avoid
to use pointers and use the containers instead and 2) I believe it is important that you
understand how the std::list is implemented. In most implementations the std::list is
implemented as a doubly-linked list. Due to the doubly-linked list, a forward and backward
iterator is available. However, for this exercise, we focus on a singly-linked list which relates
to the std::forward_list164. For more details about different types of lists, we refer to [3].

Figure 13.9 sketches the data structure and the usage of pointers. Each element of the
list contains a value in this example a integer value and a pointer of the element’s type.
For example the first element contains the value 12 and point to the second element of the
list. The second element contains the value 99 and points to the third element. For any
additional element in the list, the same principle would hold, except of the last element of
the list which point to nowhere. This is needed to determine the end of the list. Following
operations are most commons for lists

• Creating an empty list (std::list<int> list;)
• Check if a list is empty (list.empty();)
• Prepending an element to a list (list.push_front(42);
• Appending an element to a list (list.push_back(42);)
• Getting the first element of the list (list.front();
• Accessing the element at a given index
• Deleting the last element (list.pop_back();)
• Deleting the first element (list.pop_front();)

As a reference the corresponding methods for the std::list165 are shown. Fore more
details, we refer to [61, Chapter 2].
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In this section, we look into the implementation of a singly-linked list using raw C++.
Note that this in an exercise to showcase why you should avoid pointers if possible, because
handling them will get messy.

Data structures
One list element in Figure 13.9 contains one the data of the type T and one pointer to the
next element or a nullptr at the last element. Listing 14.1 shows the implementation
of the list element using a struct data. For more details about the struct, we refer to
Section 1.6.2. In Line 10 the content of the list is stored in the variable element. In
Line 12 the pointer data<T>* next is used to link to the next list element. Note that
the pointer is initialized to nullptr since we assume that the element is inserted as the
end of the list and points to nowhere. We add one constructor which assigns the value
of the element. To make the list generic, we use generic programming and adding the
template typename T. For more details for generic programming, we refer to Section 1.8.
For the initialization of the list, we would use std::list<double> using the C++ STL
and data<double> * myList.

Now, since we have the data structure for the element of the, we need the wrapper
class to hide the pointers from the user, as the C++ STL does. Listing 14.1 shows the
struct myList with a pointer to the struct struct data which points to nowhere nullptr
if the list is empty or to the first element of the list. The first constructor in Line 24 will
generate an empty list. The second constructor will generate a list of size one and pointing
to the first element. For the example in Figure 13.9 this pointer would point to the element
containing the value 12. Now we can generate an empty list myList<int> mylist; or a
list of size one myList<int> mylist = myList<int>(42);. The corresponding expression
using the C++ STL are std::list<int> list; and std::list<int> list = 42;. The
easiest function to implement is the empty() function which is shown in Line 32. Here, we
check if the first pointer is equal to the nullptr and if so, the list is empty.
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Listing 14.1: Example for a structure for a three dimensional vector.

1 // Struct for the element of a list
2 template <typename T>
3 struct data{
4

5 data(T in){
6

7 element = in;
8 }
9

10 // Element of the type std::list <T>
11 T element;
12 // Pointer of type of the class/struct
13 data <T>* next = nullptr;
14

15 };
16

17 // Struct for our implementation of the list
18 template <typename T>
19 struct myList{
20

21 // Pointer to the first element
22 data <T>* first = nullptr;
23

24 myList (){}
25

26 myList(T in){
27

28 first = new data <T>(in);
29

30 }
31

32 bool empty(){
33

34 if (first == nullptr)
35 return true;
36

37 return false;
38 }
39

40 };
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Listing 14.2: Implementation of the push_back function of a linked list.

1 void push_front(T element){
2

3 data <T>* tmp = first;
4

5 first = new data <T>( element);
6

7 first ->next = tmp;
8

9 }

Inserting

Figure 14.1 shows the linked list after the initialization myList<int> mylist = myList
(1);. Here, we called the contructor in Listing 14.1 and the pointer data<double>* first
points to the new data<double>(1). Since this element is the last element the pointer
next is the nullptr to indicate that this is the first and last element of the list.

1

Figure 14.1: The linked list after the initialization myList<double> mylist = myList<double
>(1);. The pointer first point now to the new data<double>(1) instead to the nullptr.

Inserting at the beginning
Figure 14.2 shows the list after inserting a element at the beginning of the list. In this case
the need to manipulate pointer first to the first element, see Listing 14.2. In Line 3 we
keep a temporary copy tmp of the first element. In Line 5 the pointer to the first element
points to the new first element. In Line 7 the new first element points to the previous first
element which was temporarily stored in the tmp pointer.

2 1

Figure 14.2: The linked list after inserting a new element at the beginning. The pointer first point
now to new data(double>(2) and the pointer next of the first element points to the previous
first element.

Inserting at the end
Figure 14.3 shows the list after inserting one element at the end of the list. The last element
of the list is the element where next is the nullptr. Listing 14.3 shows the implementation
of the push_back function. We assign the pointer to the first element to a temporary
pointer tmp to do not change the pointer to the first element, since we could lose access
to the list. To find the last element of the list, the while loop in Line 5 iterates as long
as the next pointer is not the nullptr. If the next pointer is the nullptr we found the
last element. So the next pointer points now to the new data<T>element(2); and this
element becomes the last element. In Figure 14.3 we have the new element colored in blue
and the first element points to the second element. The second element points to nowhere.
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1 2

Figure 14.3: The linked list after inserting an element at the end. The pointer next of the first
element does not point to the nullptr and instead points to new data<double>(2) and this
element point to the nullptr, since this is the new last element of the list.

Listing 14.3: Implementation of the push_back function of a linked list.

1 void push_back(T element){
2

3 data <T>* tmp = first;
4

5 while (tmp ->next != nullptr)
6 tmp = tmp ->next;
7

8 tmp ->next = new data <T>( element);
9 }

Inserting an element
Listing 14.4 shows the implementation of the insertion of an element at a given index. In
Line 3 a new element data<T>* newNode = new data<T>(element); containing the new
element is generated. In Line 8 we have the first special case, since we want to replace the
first node. Here, newNode->next points to the previous first element which is temporarily
stored in tmp. Now, the pointer first points to the new first node. The next case is that
we want to insert at not the first index. Here, we use the while loop in Line 17 to find the
pointer to the element at the given index. Once we found the pointer to the index, we
have to check if the pointer is not the nullptr which would mean that we want to insert
at an index larger as the size of the list, see Line 24. After this check, we can finally insert
the new element.

Removing the first element
Listing 14.5 shows the implementation of the pop_front function. In Line 3 we check for
the case if the first pointer is the nullptr and we do not need to delete the first element.
In Line 6 the first pointer is stored temporarily in tmp, the first pointer points to the second
pointer first-next, and finally we can delete the tmp pointer.

Removing the last element
Figure 14.4 shows the linked list with the last element colored in red which is deleted.
Listing 14.6 shows the implementation of the pop_back function. In Line 3 the pointer to
the first element is stored in the temporary pointer tmp and we keep a copy of the previous
pointer in the pointer prev. In line 6 we search for the element before the last element by
using tmp->next->next and after the while loop tmp points to the second element of the
example list. Thus, in Line 10 we can delete the last element tmp->next and after that
point to the nullptr since the second element became the last element.
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Listing 14.4: Implementation of the insert function of a linked list.

1 void insert(data <T>* first , T element , size_t index){
2

3 data <T>* newNode = new data <T>( element);
4 data <T>* tmp = first;
5 data <T>* prev = nullptr;
6

7 //Case: Replace the head node
8 if (index == 0 && tmp != nullptr){
9 newNode ->next = tmp;

10 first = newNode;
11 return;
12 }
13

14 // Case: search for the node
15 size_t i = 0;
16

17 while(i < index && tmp != nullptr){
18

19 prev = tmp;
20 tmp = tmp ->next;
21 i++;
22 }
23

24 if (tmp == nullptr)
25 {
26 std::cout << "Index␣" << index << "␣out␣of␣range" << std

::endl;
27 return;
28 }
29

30 prev ->next = newNode;
31 newNode ->next = tmp;
32 }
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Listing 14.5: Implementation of the pop_front function of a linked list.

1 void pop_front (){
2

3 if (first == nullptr)
4 return;
5

6 // Move the head pointer to the next node
7 data <T>* tmp = first;
8 first = first ->next;
9

10 delete tmp;
11 }

Listing 14.6: Implementation of the pop_back function of a linked list.

1 void pop_back (){
2

3 data <T>* tmp = first;
4 data <T>* prev;
5

6 while (tmp ->next ->next != nullptr){
7 tmp = tmp ->next;
8 }
9

10 delete tmp ->next;
11 tmp ->next = nullptr;
12 }
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1 2 3

1 2

Figure 14.4: In the first row the linked list before the last element was deleted and in the second
row the linked list after deleting the last element. The pointer next of the second element points
now to the nullptr since it became the last element. Note that we had to use delete to free the
memory allocated by the last element.
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Jupyter notebooks and GitHub classroom

Jupyter notebooks

Some examples for the usage of the Jupyter notebooks are provided here166 and more
details are available here [26].

GitHub classroom

We use GitHub classroom167 to submit the assignments. In this section, we go through the
steps to submit the code to GitHub using git168. For a brief overview of the most common
git commands, we refer to this cheat sheet169 and for more details to [67, 92]. The first
step to submit the assignments is to get your GitHub170 account. We recommend to use
a user name reflecting your name. If you want to use your local computer to submit the
assignments, you have to install git on your computer to follow the following instructions.
Note that git is installed on the course’s web server, so we recommend to submit from
there. Open a terminal on the course’s web server and type git config --global user.
name Surname Name to set your Surname and Name, so one can see who submitted the
assignment. Optional you can set your e-mail address using git config --global user.
email you@provider.com.

If you do not want to enter your password every time to use git, you can generate
a ssh key171 as shown in Listing 14.7. We use the command ssh-keygen to generate
the public and private key. It is common practice that the ssh-key is related to your
e-mail address. We save the private key as /.ssh/id-rsa-github and the public key as
/.ssh/id-rsa-github.pub. To avoid entering the password each time we do a commit to
the assignment, we type ssh-add ~/.ssh/id-rsa-github to add the key to our key ring.
Note that you have to add the content of your public key to GitHub by clicking on Profile
-> SSH keys and GPG keys -> New SSH key.

For each assignment, you will get an e-mail and should click on the link there, see
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Listing 14.7: Setting up a ssh key

1 ssh -keygen -t rsa -C "you@provider.com"
2 Generating public/private rsa key pair.
3 Enter file in which to save the key (/home/diehlpk /.ssh/id -

rsa): ~/. ssh/id-rsa -github
4 ssh -add ~/.ssh/id-rsa -github

(a) Invitation for the assignment on GitHub.

(b) Confirmation of the acceptance and the link to submit your assignment.

Figure 14.5: Accepting assignments on GitHub classroom.

Figure 14.5a, and accept the assignment, see Figure 14.5b. After accepting the assignment
you see a link which will be used to submit your assignment. Listing 14.8 shows how to
submit your code to this assignment. Note that you will get a new invitation for each
assignment. First, you use git clone to clone the repository and after that you change the
directory using the command cd. For each file, you like to submit you run the command
git add. Note that you have to do this only once. Using the command git commit -a
you commit all files and with the command git push you send them to the server, so the
instructor can see and grade them.
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Listing 14.8: Setting up a ssh key

1 git clone https :// github.com/diehlpkteaching/test -diehlpk.git
2 cd test -diehlpk
3 touch exercise.cpp
4 git add exercise.cpp
5 # Work on your exercise
6 git commit -a
7 git push

Notes
164https://en.cppreference.com/w/cpp/container/forward_list
165https://en.cppreference.com/w/cpp/container/list
166https://github.com/diehlpk/gateways2020
167https://classroom.github.com
168https://git-scm.com/
169https://education.github.com/git-cheat-sheet-education.pdf
170https://github.com/
171https://www.ssh.com/ssh/key/
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https://education.github.com/git-cheat-sheet-education.pdf
https://github.com/
https://www.ssh.com/ssh/key/
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