Sorting Networks Under Restricted Topology

Avah Banerjee, Dana Richards, Igor Shinkar

LSU, GMU, SFU

ibanerjee@lsu.edu

3

Figure: (a) G with unknown ranks on pebbles. (b) after passing through a sorting network ranks are known. The sorted order is given by the permutation (1)(243).

Figure: A Sorting network w.r.t identity permutation for the previous graph.

LSU 3 / 18

э

Definitions: Sorting Network

A sorting network of *depth* t is a triple $S(G, M, \pi)$:

- 1. G = (V, E) is a connected graph with a bijection $\pi : V \to \{1, ..., n\}$ specifying the sorted order on the vertices.
- M is a sequence of matchings in G where some edges may be directed.
 (direction indicates position of max)
- 3. After t stages the vertex labeled i contains the pebble whose rank is $\pi(i)$ in the sorted order.
- 4. This must hold for all (n!) initial arrangements.

Sorting number st(G) of G is the minimum depth sorting network over all permutations.

Definitions: Routing

- 1. G is a connected labeled graph with a pebble on each vertex.
- 2. Each pebble has a unique destination specified by the permutation π .
- 3. We route the pebbles via a sequence of matchings.
- 4. Pebbles are swapped along matched edges.
- 5. Routing time is the minimum number of steps necessary to route all pebbles to their destination.
- 6. After completion of routing all pebbles must be at their destination.

Routing number rt(G) of G is the maximum routing time over all permutations.

Sorting Networks Under Restricted Topology

Motivation

- Sorting networks have been studied for more than half a century.
- Initial motivation was to design physical networks for sorting.
- If topology of the network is fixed, then comparison-exchanges should be oblivious (precomputed).
- With emergence of FPGAs and GPUs sorting networks are still relevant today.
- Many privacy preserving algorithms employ oblivious permutation networks.

Motivation

- Previous studies on this subject were principally motivated to design optimal or simple sorting networks.
- Topology of these networks were an emerging property of the design.
- In this study we introduce a new paradigm.
- If the topology is fixed what is the best we could do.
- This is a natural question to ask if one wishes to design a *fault-resiliant* sorting network.

Previous Results

Graph	Lower Bound	Upper Bound	Remark
Complete Graph (K_n)	log n	$O(\log n)$	AKS Network
Hypercube (Q_n)	$\Omega(\frac{\log n \log \log n}{\log \log \log n})$	$2^{O(\sqrt{\log \log n})} \log n$	Plaxton et. al
Path (P_n)	n-1	п	OETS.
Mesh $(P_n \times P_n)$	$3n - 2\sqrt{n} - 3$	$3n + O(n^{3/4})$	Schnorr et al.
d-dimensional Mesh	$\Omega(dn)$	O(dn)	Kunde

Table: Known bounds on the sorting number for various graphs

▶ ∢ ⊒

- As long as the network is connected we should be able to sort in principle.
- Trees are minimally connected graphs.
- Any fault tolerant network should be able to handle the tree topology.
- We use two parameters to bound the depth of a sorting network, 1) diameter d 2) max degree Δ

Trees

Given a tree with *n* nodes:

- There is a $O(n \log (n/d))$ depth sorting network.
- There is a $O(\Delta n)$ depth sorting network.
- These bounds are optimal (w.r.t d and Δ) for the Star and Path graphs.

Figure: $st(K_{1,n-1}) = O(n \log n)$ and $st(P_n) = n - 1$.

High Level Idea: $O(n \log (n/d))$ -Network

- A tree with diameter d must have a path (subgraph) P_d .
- ► The path is used as sorting network to sort *d* pebbles at a time.
- We interleave sorting and routing phases to achieve the desired bound.

Figure: Path-like parts are easier to sort than Star-like parts.

High Level Idea: $O(\Delta n)$ -Network

Figure: The contour (dotted line) of the tree T.

High Level Idea: $O(\Delta n)$ -Network

- ► Contour of a tree T is a path P_T (|P_T| = 2n 1) that traverses all edges exactly twice.
- ► We can simulate an odd-even transposition sorter on this path P_T.
- Pebbles are not consecutive in P_T .
- We use routing to move pebbles adjacent to each other determined by odd or even sorting round.
- ▶ Pebbles are located ≤ 3 distance apart and takes ≤ 5 rounds to compare a pair.
- ► All edges which share a vertex can be matched with O(∆) rounds.

Building Networks Using Subgraphs

- H be a subgraph of G.
- ► If st(H) is small and G is well connected then st(G) is also small.
- 1. $st(G) = O((n/|H|) \log (n/|H|)(rt_H(G) + st(H)))$
- 2. $rt_H(G) \le rt(G) = O((n/\kappa)rt(H'))$. $rt_H(G) =$ routing number of G w.r.t destination subgraph H.

Figure: κ is the connectivity of *G*, $|H'| = Theta(\kappa)$

More Resuts

1. Highly routable graphs with good concurrency = good sorter.

$$st(G) = O\left((n \log n) \frac{rt(G)}{\nu(G)}\right)$$

 $\nu(G) =$ matching number (a measure of concurrency). 2. If G is the cartesian product of G_1 and G_2 then,

 $st(G) \leq O(\min(\log |V_1|(rt(G)+st(G_2)), \log |V_2|(rt(G)+st(G_1))).$

The Pyramid Graph

Figure: A pyramid $A_{3,2}$ with 3 layers. Dimension d = 2 and Size N = 21

э

Sorting Number of $\triangle = O(dN^{1/d})$

Figure: A multi-grid formed after stripping way some edges from $\triangle_{3,2}$

Use vertical paths of length k to move pebbles up to level k (from the base).

Questions?

Sorting Networks Under Restricted Topology

≣া ≣ প্রেও LSU 18<u>/18</u>

(4 伊下 4 戸下 4 戸下