
Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Soft Heaps And Minimum Spanning Trees

Indranil Banerjee

George Mason University

ibanerje@gmu.edu

October 27, 2016

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 1 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Quick Refresher: Heaps

A (min)-Heap is a data structure which stores a set of keys
(with an underlying total order) on which following queries are
supported:

1 Creat: Creates a (possibly empty) heap.

2 Insert(x): Inserts the key x to the heap.

3 Delete(x): Deletes the key x from the heap.

4 FindMin: Finds a key with the minimum value.

5 DecreseKey(x, y): Decreases the value of the key x to
y .

and possibly,
Meld: Given two non-empty heaps H1 and H2, destructively
merges them to produce H whose keys are union of the keys in
H1 and H2

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 2 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Quick Refresher: Heaps and Priority Queues

Sometime the FindMin and Delete is combined to a single
operation called DeleteMin.

One of the most common method of implementing a priority
queue is by using a heap.

• A min-heap can be used to implement a min-priority
queue where the keys are popped in the increasing order of
their priority.

In what to follow we shall only work with mergable-heap
operations and ignore DecreseKey and Delete.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 3 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Heaps and Priority Queues

Complexity: Lower bound

• Given a set of n elements, if we first make n-insertions and
then n consecutive DeleteMin calls the extrcated sequence
will be sorted.

• However, sorting n keys takes Ω(n log n) comparisons.

• Hence, a sequence of n arbitrary operations on a heap
requires Ω(n log n) comparisons.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 4 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Binary Heap

A tree whose nodes contain keys, is said to be (min)-heap
ordered if every parent’s key is no more than the minimum key
among its children

6

9 16

10 12 23

Figure: A binary heap with 6 nodes

Main problem: Melding takes O(n) time.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 5 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Binomial Tree

First we need to define a binomial tree:

In General

B0

B1

B2

B3

Bk−1

Bk−1

Bk

Binomial Trees, for k = 0; 1; 2; 3

• Bk , a tree with rank k has 2k nodes

• Number of nodes at the i-level of Bk is
(k
i

)
Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 6 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Binomial Heap

A binomial heap consists of a list of heap ordered binomial
trees. Using a list of trees help as achieve fast melds

B0 B2 B3
B5

N = 45 = 101101b

A binomial heap with N= 45 keys

Properties:

• DeleteMin takes O(log n) time, rest can be done in Ō(1)
(Ō(.) = amortized time)

• Which means, Melds can also be done in Ō(1) time

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 7 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Binomial Heap: Melds (H1,H2)

H1 with N1 = 43 = 101011b

H2 with N2 = 22 = 10110b

H with N = 65 = 1000001b

B0 B1

B3

B5

B1

B2

B4

B0

B6

Binomial heap meld

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 8 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Motivation

• Recall: For a classical heap, there is some sequence of
O(n) operations, that takes Ω(n log n) total time to
execute.

• The main motivation for soft heaps is to overcome this
lower bound.

• Idea: what if we do not need to be correct all the time.

• For example, if we are allowed to err every time then
clearly every heap operation can be performed in O(1)
time.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 9 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Motivation

• Q. Suppose we are allowed to err ε fraction of the time,
then what is the best we could do?

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 10 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Motivation

• Q. Suppose we are allowed to err ε fraction of the time,
then what is the best we could do?

• A. Ω(n log 1
ε).

As we shall soon see, a soft-Heap achieves this bound.

• Idea: instead of maintaining exact keys, we allow for some
keys to become corrupted

• thease corrupted keys are grouped and we only maintain
an upper bound on the group maxima

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 11 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Motivation

• Q. Suppose we are allowed to err ε fraction of the time,
then what is the best we could do?

• A. Ω(n log 1
ε).

As we shall soon see, a soft-Heap achieves this bound.

Definition (Soft-Heap)

For any ε ∈ (0, 12], in a soft-Heap a mixed sequence of
operations including n-inserts can be performed in Ō(1) time,
except for inserts which takes O(log 1

ε) time. Additionally, the
data-structure does not contain more than εn corrupted keys at
any time.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 12 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Optimallity

Let H be a soft-heap and X a set of n unordered keys.

Definition (ε-near sorted)

We call a sequence S of keys ε-near sorted if the rank of any
key in S is no more than ε n way from its actual rank in X .

Example: let X = 5, 3, 2, 9, 13, 4 and ε = 1
3 then

S = (3, 2, 5, 4, 13, 9) is 1
3 -near-sorted.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 13 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Optimallity

We can use a soft-heap ε-near sort a set of keys as follows:

1 Insert the n items successively to build the heap.

2 Use DeleteMin n times and let S be the sequence of items
popped

3 Consider set of keys Si popped during i-th phase

4 where a phase is a block of 2εn DeleteMin operations

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 14 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Optimallity

Si Si+1

2ǫn
Uncorrupted ≥ ǫn

a corrupted item s

xi

Si Si+1
a corrupted item s

xi xi+1

Sk

xk

possible position range of s

If s 2 Sk then s was corrupted during deletion of xk+1 to xi

Si

xi

xi xi+1

Actual number of keys b/w xi and xi+1 is O(ǫn)

S

S

S

From S we can easily create a O(ε)-near-sorted sequence.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 15 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Optimallity

Given X = x1, . . . , xn the #of ε near sorted permutation
C (n, ε) = (

n

εn, εn, . . . , εn︸ ︷︷ ︸
1
ε
terms

)

Hence, ε near sorting requires at least logC (n, ε) = Ω(n log 1
ε)

comparisons

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 16 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Construction

Soft-heap was introduced by Chazelle in 2000. Main differences
with a binomial heap:

1 Binomial trees (called soft-queues) in the list may be
partial

2 Some nodes in a soft-queue may contain more than one
key, we call such nodes corrupted

3 Each node in addition maintains a super-key which is an
upper bound on the keys present at the node

4 A soft-queue is (min)-heap ordered w.r.t these super-keys

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 17 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Construction

The root of each soft-queue Qk contains a pointer to the
soft-queue Qj (j ≥ k) with the minimum super-key.
(suffix-min-list)

Q0 Q1 Q2 Q4

17

3

7
9

10

[4,11] 11

12 20
[2, 15] 15

30

42

super key

key list

Figure: A soft heap with missing nodes, shown in red

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 18 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Invariants

A rank of a node in Qk is its corresponding rank in Bk

A soft-heap maintains the following invariants:

1 # of children at the root of Qk is ≥ bk/2c
2 No node of rank below r(ε) is corrupted

3 See figure

4 No more than εn keys are corrupted at any given time, if
the heap size is n

Qk0

Qk00

Qk

k0 = k00 ≤ k − 1

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 19 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Heap operations

1 Insert, meld* works just like binomial heap

2 All the magic happens during the DeleteMin operations:
• We look at the suffix-min pointer at Q0, which points to

the soft-queue with minimum super-key , say Qk

• However, the key list at the root of Qk may be empty
• In order to fix this, key(s) are moved up from the nodes

below
• This is accomplished using sift()

*except that we need to update the suffix-min-list

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 20 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Heap operations: DeleteMin

For now assume sift() works and refills the root as expected.
We can now proceed with DeleteMin.

1 If the item-list in root is not empty then we return a key
from it and we are done.

2 Otherwise, we have to use sift to refill the item list.

3 First we check if the rank invariant at the root still holds
(# children ≥ bk/2c)

4 If not, the root is dismantled (we can do this since its item
list is empty)

5 And all of its children re-melded back in to the heap

6 If the rank invariant holds we call sift(Qk) to refill the root

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 21 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Heap operations: Sift

The operation sift is what makes a soft-heap different from a
regular heap.

Qk
Qm

Qm−p

Qm−p

Sift(v)

Sift(u)

Qm

After rotation
Qm

We sift again at Qm if:

1 m > r(ε) and

2 Either m is odd or p > 1

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 22 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Heap operations: Sift

[]4

7 14
6

10

12

12

10

614

7

7

[]4

14

1

1

[7]7

14

12

10

614
7

[]4

1

[7]7

[7]7

6

14

10

112

rotation

Q4

rank = 5

After sift we clean up the nodes whose
super-keys were set to ∞

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 23 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Heap operations: Sift

Key observations:

1 If sift was never called twice during recursion, no
branching will occur

2 In which case item lists will not merge and there will be no
corrupted keys

3 Sift is only called twice for nodes with rank > r(ε)

4 this ensures corruption occurs only higher up in the tree

5 Condition (2) makes branching somewhat balanced

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 24 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Analysis

Set r(ε) = 2 + 2dlog 1
ε e

Some lemmas:

Lemma

For node v with rank k, size of its item-list
≤ max(1, 2dk/2e−r(ε)/2)

Use induction on the depth of a recursion tree of a call to sift().

Lemma

Total number of corrupted items ≤ n/2r(ε)−3

Use the previous lemma and sum over all the item lists of rank
above r(ε).

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 25 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Analysis

We only need to consider meld and sift. Meld:

• Meld takes constant amortized time, except in this case
we have to update the suffix-min list

• This takes at most minimum of the rank of the two heaps

• A heap is built up using successive melds

• This we can model as a binary tree M

• An internal node z represents melding of two heaps

• Hence cost(z) = 1 + log min(N(x),N(y))

• summing this over all nodes gives cost(M) = O(n)

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 26 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

Analysis

We only need to consider meld and sift. Sift:

• First observe that, if a key becomes corrupted then it can
never become uncorrupted again

• Hence calling sift strictly decreases the non-empty item
lists in the heap (if branching occurs)

• Hence there can be at most n − 1 branching calls to sift

• By the branching condition, a branching call cannot occur
at “depth” below r(ε)

• Hence there can be at most O(r(ε)n) total calls to sift

Lastly, updating the suffix-min list during DeleteMin can be
charged against the root dismantling, again due to the rank
invariant.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 27 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

An Application : MSF

The problem: Given a edge weighted graph G with n-vertices
and m edges find a spanning forest F with the minimum total
weight.
Solving MST is equivalent to solving MSF. Lower Bound:

• The trivial lower bound is Ω(m).

• It is an open problem to determine the decision theoretic
complexity of MSF (denote as Tm,n)

Upper Bound:

• O(m log n), Dijkstra, Jarnik & Prim algorithms : grows a
tree or a forest of trees

• O(m log n) Boruvka , uses minimum-weight matchings

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 28 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

MST: Preliminary

A subgraph is DJP-contractible if a DJP tree grown inside C
spans it.

G G n C

DJP-contractible

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 29 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

MST: Preliminary

M be the set of corrupted red-edges, MC = C ∩M and GM

new graph with corrupted edges in M

G G n C

DJP-contractible

Then, MSF (G) ⊂ MSF (C) ∪MSF (G \ C −MC) ∪Mc .

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 30 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

MST: An Optimal algorithm [Pettie, 2000]

We can generalize this. Let C1, . . . ,Ck are all DJP-contractible
and
Let G ′ = G \

⋃
j Cj −

⋃
j Mcj . Then

MSF (G) ⊂
⋃

j MSF (Cj) ∪MSF (G ′) ∪
⋃

j Mcj .
This yields the following strategy:

1 Solve MST for the DJP-contractible subgraphs using
optimal number of comparisons (Fi ’s)

2 Solve MST in G ′ using the dense case algorithm(DCA)
(FG ′)

3 Apply two steps of the Boruvka’s algorithm on
G ′′ =

⋃
i Fi ∪ FG ′ ∪M

4 Recursively solve the reduced graph G ′′′.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 31 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

MST: An Optimal algorithm

1 The algorithm first finds the DJP-contractible subgraphs

2 This is done by growing subgraphs using a min-edge
weight priority queue, implemented using a soft-heap

3 Algorithm makes sure that if some Ci ’s from clusters, then
these cluster sizes are large enough

4 For each subgraph Ci its MSF is calculated using some
optimal decision tree for the MSF (Ci)

5 If |Ci | = O(log log log n) we can pre-compute all such
ODTs in o(n) time.

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 32 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

MST: An Optimal algorithm

1 Then a DCA is used to compute the MSF of G ′

2 the dense case algorithm runs in linear time on a graph
with m/n = Ω(log log log n)

3 Since each Ci clusters are Ω(log log log n) the graph G ′

has O(n/ log log log n) vertices.

4 Hence the DCA algorithm will run in O(n + m) time in G ′

5 Finally we need to compute the MSF of
⋃
Fi ∪ FG ′ ∪M

6 The two Baruvka step reduces the number of vertices to
≤ n/4

7 Choosing ε = 1/8 ensures that M is ≤ m/4.

8 These give us the following recurrence:

T (n,m) ≤
∑
T (Ci) + T (n/4,m/2) + cm

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 33 / 34

Soft-Heaps
And Its

Applications

Indranil
Banerjee

Quick
Refresher:
Heaps

Soft-Heaps

Minimum
Spanning
Trees

References

Chazelle, B. (2000)

The soft heap: an approximate priority queue with optimal error rate.

Journal of the ACM (JACM), 47(6), 1012-1027.

Pettie, S., & Ramachandran, V. (2000)

An optimal minimum spanning tree algorithm

In International Colloquium on Automata, Languages, and
Programming (pp. 49-60).

Soft-Heaps And Its Applications Indranil Banerjee GMU October 27, 2016 34 / 34

	Quick Refresher: Heaps
	Soft-Heaps
	Minimum Spanning Trees

