> Indranil Banerjee

Soft Heaps And Minimum Spanning Trees

Indranil Banerjee

George Mason University

ibanerje@gmu.edu

October 27, 2016

Soft-Heaps And Its Applications

э

1 / 34

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

Quick Refresher: Heaps

A (min)-Heap is a data structure which stores a set of keys (with an underlying total order) on which following queries are supported:

- **1** CREAT: Creates a (possibly empty) heap.
- **2** INSERT(X): Inserts the key x to the heap.
- **3** DELETE(x): Deletes the key x from the heap.
- $\ensuremath{\textcircled{}}$ $\ensuremath{\textcircled{}}$ FINDMIN: Finds a key with the minimum value.
- **6** DECRESEKEY(X, Y): Decreases the value of the key x to y.

and possibly,

MELD: Given two non-empty heaps H_1 and H_2 , destructively merges them to produce H whose keys are union of the keys in H_1 and H_2

イロト 不得下 イヨト イヨト

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

Quick Refresher: Heaps and Priority Queues

Sometime the FindMin and Delete is combined to a single operation called DeleteMin.

One of the most common method of implementing a priority queue is by using a heap.

• A min-heap can be used to implement a min-priority queue where the keys are popped in the increasing order of their priority.

In what to follow we shall only work with mergable-heap operations and ignore ${\rm DecreseKey}$ and ${\rm Delete}.$

3 / 34

(4 個)ト イヨト イヨト

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

Heaps and Priority Queues

Complexity: Lower bound

- Given a set of *n* elements, if we first make *n*-insertions and then *n* consecutive DeleteMin calls the extrcated sequence will be sorted.
- However, sorting *n* keys takes $\Omega(n \log n)$ comparisons.
- Hence, a sequence of *n* arbitrary operations on a heap requires $\Omega(n \log n)$ comparisons.

-

-

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees Binary Heap

A tree whose nodes contain keys, is said to be (min)-heap ordered if every parent's key is no more than the minimum key among its children

Figure: A binary heap with 6 nodes

Main problem: Melding takes O(n) time.

Indranil Banerjee

Quick Refresher: Heaps

First we need to define a binomial tree:

- B_k , a tree with rank k has 2^k nodes
- Number of nodes at the *i*-level of B_k is $\binom{k}{i}$

Soft-Heaps And Its Applications

-

< 🗇 🕨

Binomial Tree

Binomial Heap

Soft-Heaps And Its Applications

> Indranil Banerjee

Quick Refresher[.] Heaps

A binomial heap consists of a list of heap ordered binomial trees. Using a list of trees help as achieve fast melds

 $N = 45 = 101101_{h}$ A binomial heap with N= 45 keys

Properties:

- DeleteMin takes $O(\log n)$ time, rest can be done in $\overline{O}(1)$ (O(.) = amortized time)
- Which means, Melds can also be done in $\overline{O}(1)$ time

< 67 ▶

Motivation

Soft-Heaps And Its Applications

Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

- Recall: For a classical heap, there is some sequence of O(n) operations, that takes Ω(n log n) total time to execute.
- The main motivation for soft heaps is to overcome this lower bound.
- Idea: what if we do not need to be correct all the time.
- For example, if we are allowed to err every time then clearly every heap operation can be performed in O(1) time.

9 / 34

Motivation

Indranil Banerjee

Soft-Heaps

• Q. Suppose we are allowed to err ϵ fraction of the time, then what is the best we could do?

- 4 ⊒ →

3

< 17 ▶

Motivation

Soft-Heaps And Its Applications

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

- Q. Suppose we are allowed to err ϵ fraction of the time, then what is the best we could do?
- A. $\Omega(n \log \frac{1}{\epsilon})$.

As we shall soon see, a soft-Heap achieves this bound.

- Idea: instead of maintaining exact keys, we allow for some keys to become corrupted
- thease corrupted keys are grouped and we only maintain an upper bound on the group maxima

Motivation

Soft-Heaps And Its Applications

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

- Q. Suppose we are allowed to err ϵ fraction of the time, then what is the best we could do?
- A. $\Omega(n \log \frac{1}{\epsilon})$.

As we shall soon see, a soft-Heap achieves this bound.

Definition (Soft-Heap)

For any $\epsilon \in (0, \frac{1}{2}]$, in a soft-Heap a mixed sequence of operations including *n*-inserts can be performed in $\overline{O}(1)$ time, except for inserts which takes $O(\log \frac{1}{\epsilon})$ time. Additionally, the data-structure does not contain more than ϵn corrupted keys at any time.

(4) E (4) E (4)

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees Let H be a soft-heap and X a set of n unordered keys.

Definition (ϵ -near sorted)

We call a sequence S of keys ϵ -near sorted if the rank of any key in S is no more than ϵ n way from its actual rank in X.

Example: let X = 5, 3, 2, 9, 13, 4 and $\epsilon = \frac{1}{3}$ then

S = (3, 2, 5, 4, 13, 9) is $\frac{1}{3}$ -near-sorted.

Optimallity

> Indranil Baneriee

Soft-Heaps

We can use a soft-heap ϵ -near sort a set of keys as follows:

- **1** Insert the *n* items successively to build the heap.
- Q Use DeleteMin n times and let S be the sequence of items popped
- **3** Consider set of keys S_i popped during *i*-th phase
- **4** where a phase is a block of $2\epsilon n$ DeleteMin operations

12 B

Optimallity

Indranil Banerjee

Soft-Heaps

Given $X = x_1, \ldots, x_n$ the #of ϵ near sorted permutation $C(n,\epsilon) =$

Hence, ϵ near sorting requires at least log $C(n, \epsilon) = \Omega(n \log \frac{1}{\epsilon})$ comparisons

< 17 ▶

3

$$\begin{pmatrix} n \\ \epsilon n, \epsilon n, \dots, \epsilon n \end{pmatrix}$$

$$\frac{\frac{1}{\epsilon} \text{ terms}}{\frac{1}{\epsilon}}$$

Construction

Soft-Heaps And Its Applications

Indranil Baneriee

Soft-Heaps

Soft-heap was introduced by Chazelle in 2000. Main differences with a binomial heap:

- Binomial trees (called soft-queues) in the list may be partial
- 2 Some nodes in a soft-queue may contain more than one key, we call such nodes corrupted
- 3 Each node in addition maintains a super-key which is an upper bound on the keys present at the node
- A soft-queue is (min)-heap ordered w.r.t these super-keys

- 4 A -

- (∃)

3

Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees The root of each soft-queue Q_k contains a pointer to the soft-queue Q_j $(j \ge k)$ with the minimum super-key. (suffix-min-list)

Figure: A soft heap with missing nodes, shown in red

Construction

< A

> Indranil Banerjee

Soft-Heaps

A rank of a node in Q_k is its corresponding rank in B_k A soft-heap maintains the following invariants:

- **1** # of children at the root of Q_k is $\geq |k/2|$
- **2** No node of rank below $r(\epsilon)$ is corrupted
- See figure
- 4 No more than ϵn keys are corrupted at any given time, if the heap size is n

 $k' = k'' \le k - 1$

- 4 ⊒ →

Invariants

Heap operations

Soft-Heaps And Its Applications

Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

- 1 Insert, meld* works just like binomial heap
- **2** All the magic happens during the DeleteMin operations:
 - We look at the suffix-min pointer at Q₀, which points to the soft-queue with minimum super-key , say Q_k
 - However, the key list at the root of Q_k may be empty
 - In order to fix this, key(s) are moved up from the nodes below
 - This is accomplished using sift()

*except that we need to update the suffix-min-list

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

Heap operations: DeleteMin

For now assume sift() works and refills the root as expected. We can now proceed with DeleteMin.

- If the item-list in root is not empty then we return a key from it and we are done.
- 2 Otherwise, we have to use sift to refill the item list.
- G First we check if the rank invariant at the root still holds (# children ≥ ⌊k/2⌋)
- If not, the root is dismantled (we can do this since its item list is empty)
- S And all of its children re-melded back in to the heap
- **(6)** If the rank invariant holds we call $sift(Q_k)$ to refill the root

Heap operations: Sift

Applications Indranil Banerjee

Soft-Heaps

And Its

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

The operation sift is what makes a soft-heap different from a

Soft-Heaps And Its Applications

regular heap.

GMU October 27, 2016

22 / 34

Heap operations: Sift

After sift we clean up the nodes whose super-keys were set to ∞

Soft-Heaps And Its Applications

Soft-Heaps

And Its Applications Indranil Banerjee

Soft-Heaps

Indranil Banerjee

GMU October 27, 2016

Heap operations: Sift

Soft-Heaps And Its Applications

Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

Key observations:

- If sift was never called twice during recursion, no branching will occur
- In which case item lists will not merge and there will be no corrupted keys
- **3** Sift is only called twice for nodes with rank $> r(\epsilon)$
- 4 this ensures corruption occurs only higher up in the tree
- **5** Condition (2) makes branching somewhat balanced

Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees Set $r(\epsilon) = 2 + 2\lceil \log \frac{1}{\epsilon} \rceil$ Some lemmas:

Lemma

For node v with rank k, size of its item-list $\leq \max(1, 2^{\lceil k/2 \rceil - r(\epsilon)/2})$

Use induction on the depth of a recursion tree of a call to sift().

Lemma

Total number of corrupted items $\leq n/2^{r(\epsilon)-3}$

Use the previous lemma and sum over all the item lists of rank above $r(\epsilon)$.

3

Analysis

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

We only need to consider meld and sift. Meld:

- Meld takes constant amortized time, except in this case we have to update the suffix-min list
- This takes at most minimum of the rank of the two heaps
- A heap is built up using successive melds
- This we can model as a binary tree M
- An internal node z represents melding of two heaps
- Hence $cost(z) = 1 + \log \min(N(x), N(y))$
- summing this over all nodes gives cost(M) = O(n)

Soft-Heaps And Its Applications

4 A b

A B F A B F

Analysis

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees We only need to consider meld and sift. Sift:

- First observe that, if a key becomes corrupted then it can never become uncorrupted again
- Hence calling sift strictly decreases the non-empty item lists in the heap (if branching occurs)
- Hence there can be at most n-1 branching calls to sift
- By the branching condition, a branching call cannot occur at "depth" below $r(\epsilon)$

• Hence there can be at most $O(r(\epsilon)n)$ total calls to sift Lastly, updating the suffix-min list during DeleteMin can be charged against the root dismantling, again due to the rank invariant.

3

Analysis

An Application : MSF

Soft-Heaps And Its Applications

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees **The problem:** Given a edge weighted graph G with n-vertices and m edges find a spanning forest F with the minimum total weight.

Solving MST is equivalent to solving MSF. Lower Bound:

- The trivial lower bound is $\Omega(m)$.
- It is an **open problem** to determine the decision theoretic complexity of MSF (denote as T_{m,n})

Upper Bound:

- $O(m \log n)$, Dijkstra, Jarnik & Prim algorithms : grows a tree or a forest of trees
- $O(m \log n)$ Boruvka , uses minimum-weight matchings

3

MST: Preliminary

Applications Indranil Banerjee

Soft-Heaps

And Its

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

Soft-Heaps And Its Applications

GMU October 27, 2016

29 / 34

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees MST: Preliminary

M be the set of corrupted red-edges, $M_C = C \cap M$ and G_M new graph with corrupted edges in M

Soft-Heaps And Its Applications

Indranil Banerjee

GMU October 27, 2016

- < A

30 / 34

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

MST: An Optimal algorithm [Pettie, 2000]

We can generalize this. Let C_1, \ldots, C_k are all DJP-contractible and

Let $G' = G \setminus \bigcup_j C_j - \bigcup_j M_{c_j}$. Then

 $MSF(G) \subset \bigcup_{j} MSF(C_{j}) \cup MSF(G') \cup \bigcup_{j} M_{c_{j}}$. This yields the following strategy:

- Solve MST for the DJP-contractible subgraphs using optimal number of comparisons (*F_i*'s)
- **2** Solve MST in G' using the **dense case algorithm**(DCA) $(F_{G'})$
- **3** Apply two steps of the Boruvka's algorithm on $G'' = \bigcup_i F_i \cup F_{G'} \cup M$
- **4** Recursively solve the reduced graph G'''.

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

MST: An Optimal algorithm

- **1** The algorithm first finds the DJP-contractible subgraphs
- This is done by growing subgraphs using a min-edge weight priority queue, implemented using a soft-heap
- Algorithm makes sure that if some C_i's from clusters, then these cluster sizes are large enough
- For each subgraph C_i its MSF is calculated using some optimal decision tree for the MSF(C_i)
- If |C_i| = O(log log log n) we can pre-compute all such ODTs in o(n) time.

> Indranil Banerjee

Quick Refresher: Heaps

Soft-Heaps

Minimum Spanning Trees

MST: An Optimal algorithm

- **1** Then a DCA is used to compute the MSF of G'
- 2 the dense case algorithm runs in linear time on a graph with $m/n = \Omega(\log \log \log n)$
- Since each C_i clusters are Ω(log log log n) the graph G' has O(n/ log log log n) vertices.
- **4** Hence the DCA algorithm will run in O(n + m) time in G'
- **5** Finally we need to compute the MSF of $\bigcup F_i \cup F_{G'} \cup M$
- The two Baruvka step reduces the number of vertices to $\leq n/4$
- **7** Choosing $\epsilon = 1/8$ ensures that M is $\leq m/4$.
- **8** These give us the following recurrence:

$$T(n,m) \leq \sum T(C_i) + T(n/4,m/2) + cm$$

3

> Indranil Banerjee

Minimum Spanning Trees

Chazelle, B. (2000)

The soft heap: an approximate priority queue with optimal error rate. Journal of the ACM (JACM), 47(6), 1012-1027.

Pettie, S., & Ramachandran, V. (2000)

An optimal minimum spanning tree algorithm

In International Colloquium on Automata, Languages, and Programming (pp. 49-60).

< A

-

э