Computing
Maximal
Layers

Indranil
Banerjee

Definitions

Previous work Computing Maximal Layers Of Points In E£f(")

Main results

Overview of
our algorithm

- Indranil Banerjee, Dana Richards

Runtime
analysis George Mason University

When P Is

Not Random ibanerje@cs.gmu.edu

Conclusion

and Future Apr|| 11, 2016

Work

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016

C’\-;E);:iumtiar;g Deﬂn't'ons

Layers

Indranil

Banerjee K (p — q) \

Previous work

For two points p,q € EX we say p dominates g or
p is above q iff p[i] > q[i] Vi € [k] .
Overview of \ /

our algorithm (

Main results

HST Let P ={p1,...,pn} with p; € E¥, we define the First
Runtime Maximal Layer M;(P) of P as the set of points, that are
e p1s L not dominated by any other points.

Conclusion e

Work The hth maximal layer is defined recursively:

h—1
Mn(P) =My [P\ | Mi(P)
i=1

-

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 2/22

Vet Definitions

Layers

Indranil

Banerjee The height h of P is the number of non-empty (maximal)
layers in P and the width w is the size of the largest anti-
Previous work Chain in (P7 >_)

Main results

Overview of To
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

>

T

Figure: Dotted chains represent the maximal layers of the point set P.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 3/22

Cpane Definitions
Layers
’ Random Orders

Indranil
Banerjee

Previous work

Main results (
Overviw of P is a random order if P is built by picking points

our algorithm uniformly at random from the unit k-cube [0, 1]%.
HST

Runtime

analysis Alternatively P is picked uniformly at random from

When P Is Sk, set of all k-tuple of n-permutations
Not Random \

Conclusion
and Future

Work (It can be shown that they are equivalent]

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 4 /22

Vit Definitions

Layers
i Random Orders
Banerjee
Previous work
Main results @ The expected height h = O(n'/¥) and width
Overview of V_V — O(nl_l/k)
our algorithm .
et @ It is known that My(P) = O((log n)*~1) (for fixed k)
Funiime © There is no known asymptotic formula for the size
M N distribution of layers beyond the first layer.
ot Random ® We show (in ongoing work) the problem is closely related
S to determining the longest increasing subsequence of a
Work

random permutation.
@ For a random order Prob|[p[i] = q[i]] = 0.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 5/22

Vit Previous work

Layers

Indranil
Banerjee

T Deterministic Setting:(k is fixed)
@ In a seminal paper [Kung et al, 1975] proposed an

Main results algorithm for finding the first maximal layer in

Overview of O(n(log n)k=2) time. This uses multi-dimensional

et divide-and-conquer approach.

Runtime @® [Jensen, 2003] extended this to compute all the layers in
analysis k—1 .

When P Is O(n(log n)) time.

Not Random (k — n)

Conlusion [Matougek, 1991] gave a O(n'>t/2) algorithm for determining
Work

the first maximal layer.
Randomized Algorithm When P Is A Random Order

@ [Bentley, 1975] gave expected O(n) algorithm for a fixed k

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 6 /22

e Our Results
Layers
’ For Random Orders

Indranil
Banerjee

Definitions

Previous work

@ We introduce a new iterative framework for the maximal
B, layers problem.

HST @® We assume that the dimension k may not be constant,
analyeis © The proposed algorithm has an expected run-time of
hen 21 O(kn?=%(K)) (5(k) > 0).

Conclucion O The factor k accounts for the fact that checking

oo e dominance requires O(k) time

@ Later it is extended for an arbitrary P

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 7/22

Trogima A Simple Iterative Algorithm
o For Random Orders

Indranil
Banerjee

Definitions
Previous work [Main StepS:]
Main results

Overview of
@ Sort the points in descending order according to the Lo,

e norm. (T)

f,ﬁ!};‘s'f ® We pick from T one element at a time in order.
Mot o © Insert() the element in to the layer it belongs to.
ivdkr‘m O End when T is empty.

Nor

Step 3 is achieved through a new data structure Hierar-
chical Search Tree (HST), for each layer.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 8 /22

Trogimar® A Simple Iterative Algorithm
Layers
i For Random Orders
Banerjee
Definitions
Previous work .
e [If p precedes g in T then g cannot dominate p.]
our algorithm (
HST Expected runtime = n X t; + tp,.
Fundime t; = the expected time to insert an element in to its
. HST. (Line 3)
When P Is A
Not Random t, = time to compute T
Conclusion \
and Future
Work f
T can be computed in O(kn + log n), which we can
ignore

_

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 9 /22

Trogima A Simple Iterative Algorithm
o Step-3: Insert()

Indranil
Banerjee

Definitions

Pr work o a H
revious worl [We maintain each |ayer uslng an HST)

Main results

Overview of
our algorithm

@ Layers are totally ordered.

HST

Runtime @ Hence, we can use a binary search tree (B), to maintain
analysis the Sorted Order

When P Is . i [

Not Random ® During Insert() we traverse B, querying corresponding
S HST to see if the current point is dominated by some
Work point in that layers/HST

O If no suitable HST is found, then we create an empty HST
in B and insert the point

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 10 / 22

Computing
Maximal
Layers
Indranil
Banerjee

Definitions
Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)

Definition

(An HST Is Defined Recursively

@ A singleton node (root) storing a point p.

@® A root has a number of non-empty children nodes (up to
k) each of which is a root of an HST.

© If node q is in the j subtree of node p then p[j] > q[/]

HST is similar in principal to space partition trees.

Computing Maximal Layers

Indranil Banerjee

GMU April 11, 2016 11 /22

Computing
Maximal
Layers
Indranil
Banerjee

Definitions
Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)

Queries

Figure: Example of an HST for the
3-dimensional case.

by some point inside the layer

[Above(): Checks whether the query point is dominated
[Add(): Inserts the query point into the HST

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 12 / 22

Computing
Maximal
Layers
Indranil
Banerjee

Definitions
Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)

Queries

(Above()

@ Let g be the query point, let p be the point at the root

@® if p = g then stop (the current layer dominates q)

else

recursively search a subtree for each each half-space
labeled j for which p[j] > q[J]

Computing Maximal Layers

Indranil Banerjee

GMU April 11, 2016 13 / 22

Computing
Maximal
Layers
Indranil
Banerjee

Definitions
Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)

Queries

Add()

@ We start at the root, and proceed as we did in the case of
Above()

@ If there are more than one choice of subtrees then we
choose one uniformly at random

© We stop and insert the point when we reach an empty leaf
node.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 14 / 22

Computing Analysis

Layers

Indranil
Banerjee

Definitions

Lemma:
Previous work k—1

n = Prob{ plj] > qlj] | p precedes g in T} =1 — 55=7%;

Main results

Overview of
our algorithm

HST @ We see 1 does not depend on the relative ranks in T of
the elements

analysis

When P Is @ ti = tsearch + tadd

Not Random

. © tscarch = the expected time it takes to search B to find the
and Future COrreCt Iayer

Work
O t.4g = the cost adding the element to an HST
(5] tsearch > tadd

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 15 / 22

Computing Analysis

Layers

ComPUting tsearch

Indranil

Banerjee
Definitions
Previous work
Main results

Overview of

our algorithm ® First we compute a,, 4 the expected number of nodes at
HST depth d of a HST with m nodes

@® Let by, x = the number of nodes visited during Above()
e © We use ap, g to bound the expected value of bp, «
Conclusion O Then teearch = bm ik X logh

Work

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 16 / 22

Comping Analysis

Layers

ComPUting tsearch

Indranil
Banerjee

Definitions k—

@® Recalln=1- 2(,(7;1) is the probability that a node p,
already in some HST, dominates the query point q. Then,

Previous work
Main results

Overview of
our algorithm

m—1

i

HST bm,k: E am,iT]
i=0

Runtime
analysis
When P Is ® We compute a,, 4 using the following recurrence:

Not Random

Conclusion 1 1
CC;[“W am,d = <kdl> amflydfl + (1 - kd> amfl,d

© It is unlikely that the above recurrence has a closed form
as the recurrence for the binomial coefficient is a special
form of it.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 17 / 22

Computing
Maximal
Layers
Indranil
Banerjee

Definitions
Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Analysis

ComPUting tsearch

1 1
am,d = <kd_1> dm-1,d—1 + <1 kd) adm—1,d

@ Fortunately a,, 4 is unimodal and is bell-shaped with
respect to d when w and k are fixed

® Using bounds on the maxima of a,, 4 we show that

bm kK = O(m |°gk+|0gk (1+))

©®© mh<n
O tsearch = bmk X log h = O(knlié(k) log n)
© Total runtime = O(kn?~9'(K)

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 18 / 22

Vit When P Is Not Random
A List Of HSTs

Indranil
Banerjee

Definitions

Previous work List-HST with < /i nodes

Main results

Overviewof | LA LA LN e e |—_I—|
our algorithm -l

N
HST \V Residual List R < \/n
Runtime Each HST has size /n

analysis

When P Is
@ The Above() is modified to iterate over this list of HSTs

Conclusion

and Future instead of a single one and the list R

Work
® When adding to the List-HST, we first check if R is full or
not. If R is full we create an HST and add it to the list.
Otherwise we just add the point to the R.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 19 / 22

Vit The General Case
Using A List Of HSTs

Indranil
Banerjee

Definitions (Creating an HST

Previous work

Main results We randomly permute the points in R before creating a
Overview of new HST

our algorithm

HST ono . o

So we can carry the same probabilistic assumptions
Runtime .
analysis from the preVIOUS case
When P Is K /
Not Random
Concusion @ It can be shown that SEARCH on the list of HSTs takes
and Future
Work O(kn1/2+(|°gk (k_l))/2)

® Which gives the total runtime of
O(k?n3/2+(og (k=1))/2|og n) = O(k?n?—£(K))

©®0<¢(k)<1/2

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 20 / 22

Computing
Maximal
Layers
Indranil
Banerjee

Definitions
Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Open Problems
Using A List Of HSTs

@ In the deterministic setting, can we reduce the upper
bound to o(n?) independent of k.

@® Alternatively improve the trivial lower bound of (nlog n)

® Given a random order, determine the expected value of
M (P).

Questions?

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 21 /22

Computing
Maximal
Layers
Indranil
Banerjee

Definitions
Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

(3 Winkler, P. (1985)
Random Orders
Order 1(4), 317 - 331.

[d Jensen M. T. (2003)

Reducing the Run-Time Complexity of Multiobjective EAs: The

NSGA-II and Other Algorithms
IEEE TEC 7(5), 503 — 515.

@ Kung H. T., Luccio F., Preparata F. P. (1975)
On Finding the maxima of a Set of Vectors

Journal of ACM 22(4), 469 — 476.

[3 Bentley J. L. (1980)

Multidimensional Divide-and-conquer
Commun. ACM 23(4), 214 — 229.

[Matouzek, J. (1991)

Computing dominance in E”

Information Processing Letters 38, 277 — 278 .

Computing Maximal Layers

Indranil Banerjee

References

GMU April 11, 2016

22 /22

	Definitions
	Previous work
	Main results
	Overview of our algorithm
	HST
	Runtime analysis
	When P Is Not Random
	Conclusion and Future Work

