
Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Computing Maximal Layers Of Points In E f (n)

Indranil Banerjee, Dana Richards

George Mason University

ibanerje@cs.gmu.edu

April 11, 2016

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 1 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Definitions

(p � q)

For two points p, q ∈ E k we say p dominates q or
p is above q iff p[i ] ≥ q[i ] ∀i ∈ [k] .

Let P = {p1, ..., pn}P = {p1, ..., pn}P = {p1, ..., pn} with pi ∈ E k , we define the First
Maximal Layer M1(P) of P as the set of points, that are
not dominated by any other points.

The hthhthhth maximal layer is defined recursively:

Mh(P) = M1

(
P \

h−1⋃
i=1

Mi (P)

)

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 2 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Definitions

The height h of P is the number of non-empty (maximal)
layers in P and the widthwidthwidth w is the size of the largest anti-
chain in (P,�).

P

x1

x2

Figure: Dotted chains represent the maximal layers of the point set P.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 3 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Definitions
Random Orders

P is a random order if P is built by picking points
uniformly at random from the unit k-cube [0, 1]k .

Alternatively P is picked uniformly at random from
Sk
n , set of all k-tuple of n-permutations

It can be shown that they are equivalent

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 4 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Definitions
Random Orders

1 The expected height h̄ = O(n1/k) and width
w̄ = O(n1−1/k)

2 It is known that M1(P) = O((log n)k−1) (for fixed k)

3 There is no known asymptotic formula for the size
distribution of layers beyond the first layer.

4 We show (in ongoing work) the problem is closely related
to determining the longest increasing subsequence of a
random permutation.

5 For a random order Prob[p[i ] = q[i ]] = 0Prob[p[i ] = q[i ]] = 0Prob[p[i ] = q[i ]] = 0.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 5 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Previous work

Deterministic Setting:Deterministic Setting:Deterministic Setting:(k is fixed)

1 In a seminal paper [Kung et al, 1975] proposed an
algorithm for finding the first maximal layer in
O(n(log n)k−2) time. This uses multi-dimensional
divide-and-conquer approach.

2 [Jensen, 2003] extended this to compute all the layers in
O(n(log n)k−1) time.

(k = n)
[Matoušek, 1991] gave a O(n1.5+ω/2) algorithm for determining
the first maximal layer.
Randomized Algorithm When P Is A Random OrderRandomized Algorithm When P Is A Random OrderRandomized Algorithm When P Is A Random Order

1 [Bentley, 1975] gave expected O(n) algorithm for a fixed k

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 6 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Our Results
For Random Orders

1 We introduce a new iterative framework for the maximal
layers problem.

2 We assume that the dimension k may not be constant,

3 The proposed algorithm has an expected run-time of
O(kn2−δ(k))O(kn2−δ(k))O(kn2−δ(k)) (δ(k) > 0).

4 The factor k accounts for the fact that checking
dominance requires O(k) time

5 Later it is extended for an arbitrary P

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 7 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

A Simple Iterative Algorithm
For Random Orders

Main Steps:

1 Sort the points in descending order according to the L∞
norm. (T )

2 We pick from T one element at a time in order.

3 Insert() the element in to the layer it belongs to.

4 End when T is empty.

Step 3 is achieved through a new data structure Hierar-
chical Search Tree (HST), for each layer.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 8 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

A Simple Iterative Algorithm
For Random Orders

If p precedesprecedesprecedes q in T then q cannot dominatecannot dominatecannot dominate p.

Expected runtime = n × ti + tn.
ti = the expected time to insert an element in to its
HST. (Line 3)
tn = time to compute T

T can be computed in O(kn + log n), which we can
ignore

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 9 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

A Simple Iterative Algorithm
Step-3: Insert()

We maintain each layer using an HST

1 Layers are totally ordered.

2 Hence, we can use a binary search tree (B), to maintain
the sorted order

3 During Insert() we traverse B, querying corresponding
HST to see if the current point is dominated by some
point in that layers/HST

4 If no suitable HST is found, then we create an empty HST
in B and insert the point

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 10 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)
Definition

An HST Is Defined Recursively

1 A singleton node (root) storing a point p.

2 A root has a number of non-empty children nodes (up to
k) each of which is a root of an HST.

3 If node q is in the j th subtree of node p then p[j ] ≥ q[j ]

HST is similar in principal to space partition trees.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 11 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)
Queries

p

x

y

z

q

Figure: Example of an HST for the
3-dimensional case.

Above(): Checks whether the query point is dominated
by some point inside the layer

Add(): Inserts the query point into the HST

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 12 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)
Queries

Above()

1 Let q be the query point, let p be the point at the root

2 ififif p � q then stop (the current layer dominates q)
elseelseelse
recursively search a subtree for each each half-space
labeled j for which p[j ] ≥ q[j ]

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 13 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Hierarchal Search Tree (HST)
Queries

Add()

1 We start at the root, and proceed as we did in the case of
Above()

2 If there are more than one choice of subtrees then we
choose one uniformly at random

3 We stop and insert the point when we reach an empty leaf
node.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 14 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Analysis

Lemma:
η = Prob{ p[j ] ≥ q[j ] | p precedes q in T} = 1− k−1

2(k+1)

1 We see η does not depend on the relative ranks in T of
the elements

2 ti = tsearch + tadd

3 tsearch = the expected time it takes to search B to find the
correct layer

4 tadd = the cost adding the element to an HST

5 tsearch ≥ tadd

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 15 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Analysis
Computing tsearch

1 First we compute am,d the expected number of nodes at
depth ddepth ddepth d of a HST with m nodes

2 Let bm,k = the number of nodes visited during Above()

3 We use am,d to bound the expected value of bm,k

4 Then tsearch = bm,k × log h

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 16 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Analysis
Computing tsearch

1 Recall η = 1− k−1
2(k+1) is the probability that a node p,

already in some HST, dominates the query point q. Then,

bm,k =
m−1∑
i=0

am,iη
i

2 We compute am,d using the following recurrence:

am,d =

(
1

kd−1

)
am−1,d−1 +

(
1− 1

kd

)
am−1,d

3 It is unlikely that the above recurrence has a closed form
as the recurrence for the binomial coefficient is a special
form of it.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 17 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Analysis
Computing tsearch

am,d =

(
1

kd−1

)
am−1,d−1 +

(
1− 1

kd

)
am−1,d

1 Fortunately am,d is unimodal and is bell-shaped with
respect to d when w and k are fixed

2 Using bounds on the maxima of am,d we show that

bm,k = O(m1− 1
log k

+logk (1+ 1
k

))

3 m, h ≤ n

4 tsearch = bm,k × log h = O(kn1−δ(k) log n)

5 Total runtime = O(kn2−δ′(k))

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 18 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

When P Is Not Random
A List Of HSTs

: : : : : : : : :

Residual List R <
p

n

Each HST has size
p

n

List-HST with ≤
p

n nodes

1 The Above() is modified to iterate over this list of HSTs
instead of a single one and the list R

2 When adding to the List-HST, we first check if R is full or
not. If R is full we create an HST and add it to the list.
Otherwise we just add the point to the R.

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 19 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

The General Case
Using A List Of HSTs

Creating an HST

We randomly permute the points in R before creating a
new HST

So we can carry the same probabilistic assumptions
from the previous case

1 It can be shown that Search on the list of HSTs takes
O(kn1/2+(logk (k−1))/2)

2 Which gives the total runtime of
O(k2n3/2+(logk (k−1))/2 log n) = O(k2n2−ξ(k))

3 0 < ξ(k) < 1/2

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 20 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

Open Problems
Using A List Of HSTs

1 In the deterministic setting, can we reduce the upper
bound to o(n2) independent of k.

2 Alternatively improve the trivial lower bound of (n log n)

3 Given a random order, determine the expected value of
Mh(P).

Questions?

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 21 / 22



Computing
Maximal

Layers

Indranil
Banerjee

Definitions

Previous work

Main results

Overview of
our algorithm

HST

Runtime
analysis

When P Is
Not Random

Conclusion
and Future
Work

References

Winkler, P. (1985)

Random Orders

Order 1(4), 317 – 331.

Jensen M. T. (2003)

Reducing the Run-Time Complexity of Multiobjective EAs: The
NSGA-II and Other Algorithms

IEEE TEC 7(5), 503 – 515.

Kung H. T., Luccio F., Preparata F. P. (1975)

On Finding the maxima of a Set of Vectors

Journal of ACM 22(4), 469 – 476.

Bentley J. L. (1980)

Multidimensional Divide-and-conquer

Commun. ACM 23(4), 214 – 229.

Matoušek, J. (1991)

Computing dominance in E n

Information Processing Letters 38, 277 – 278 .

Computing Maximal Layers Indranil Banerjee GMU April 11, 2016 22 / 22


	Definitions
	Previous work
	Main results
	Overview of our algorithm
	HST
	Runtime analysis
	When P Is Not Random
	Conclusion and Future Work

