Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Sorting Networks

Indranil Banerjee

George Mason University

ibanerje@gmu.edu

March 3, 2016

Sorting Networks

3

(人間) トイヨト イヨト

Hardware Level Parallelism

There are mainly two approaches to sorting in parallel:

1 Non-oblivious: Comparisons are data dependent

Example: Parallel Quicksort, Parallel Merge Sort etc.

Oblivious: Comparisons are precomputed and does not depend on the results of previous comparisons. Example: Sorting Networks

Sorting

Networks Indranil Baneriee

Parallel Sorting: Hardware

Parallelism

Oblivious Sorting

Sorting Networks

- Indranil Banerjee
- Parallel Sorting: Hardware Level Parallelism

- Since the comparisons are not data dependent, we can precoumpute the comparisons and directly implemented them inside a hardware
- 2 An oblivious sorting algorithm proceeds in stages
- Each stage consists of a number of comparisons which occur concurrently
- We will look at one such algorithm: Batcher's Odd-Even Merge Sort

Odd-Even Merge Sort

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

The Algorithm: ODDEVENMERGESORT (X)

INPUT: ARRAY $X = \{x_0, x_1, ..., x_{n-1}\}$ (Assume *n* is power of 2) OUTPUT: SORTED SEQUENCE X

1
$$X_L = \{x_0, ..., x_{n/2-1}\}$$
 and $X_R = \{x_{n/2}, ..., x_{n-1}\}$

② IF *n* > 1:

ODDEVENMERGESORT(X_L) ODDEVENMERGESORT(X_R) ODDEVENMERGE(X_L, X_R) \leftarrow Recursive

Odd-Even Merge

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

The Algorithm: ODDEVENMERGE(X)

INPUT: AN ARRY X WHOSE TWO HALVS X_L AND X_R ARE SORTED (Assume $n = |X_L| = |X_R|$ is power of 2) OUTPUT: SORTED SEQUENCE X

 IF n > 2 THEN: Let X_{Even} = {x₀, x₂, ..., x_n} and X_{Odd} = {x₁, x₃, ...x_{n-1}} i ODDEVENMERGE(X_{Even}) ii ODDEVENMERGE(X_{Odd}) iii PARDO: Compare(x_{2i-1}, x_{2i}) WHILE (1 ≤ i ≤ (n - 2)/2)

2 Compare (x_0, x_1)

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Sorting Network

A Comparator:

Source: http://parallelcomp.uw.hu/ch09lev1sec2.html

			-) 4 (-
Sorting Networks	Indranil Banerjee	GMU March 3, 2016	6 / 19

- **1**

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Series Parallel Comparisons:

Figure: What is this sorting algorithm?

Source: http://www.cs.cmu.edu/~tcortina/15110m14/ps9/ = ??? Sorting Networks GMU March 3, 2016 7/19

Sorting Network

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network:

Figure: The comparator blocks are individual merging networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

_

Batcher's Odd-Even Merging Network:

Figure: Merging networks for n = 2, 4

< 行

Sorting Network

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network (Expanded):

Sorting Networks

GMU March 3, 2016 10

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network (Expanded):

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network (Expanded):

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network (Expanded):

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network (Expanded):

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network (Expanded):

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Batcher's Odd-Even Merge Sort Network (Expanded):

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Proving Correctness: The 0-1 Principle

- The correctness of the any oblivious sorting algorithm can be proven using the 0-1-principle
- 0-1-principle: If a sorting network sorts every sequence of 0's and 1's, then it sorts every arbitrary sequence of values.

Complexity?

Sorting Networks

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism

Proving Correctness: The 0-1 Principle

- The correctness of the any oblivious sorting algorithm can be proven using the 0-1-principle
- 0-1-principle: If a sorting network sorts every sequence of 0's and 1's, then it sorts every arbitrary sequence of values.

Complexity? Can be answered directly by looking at the network.

- **1** Size: $O(n \log^2 n)$ (This is the serial runtime)
- **2 Depth:** $O(\log^2 n)$ (This is the parallel runtime)

Indranil Banerjee

Parallel Sorting: Hardware Level Parallelism Q & A

Can we have sorting networks with O(log n) depth and O(n log n) size?

2 How do we implement such networks?

Sorting Networks

< 67 ▶

- 4 ⊒ →

3