/* Copyright (c) 1997, 1998 Carnegie Mellon University. All Rights Reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. The name of the author may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The AODV code developed by the CMU/MONARCH group was optimized and tuned by Samir Das and Mahesh Marina, University of Cincinnati. The work was partially done in Sun Microsystems. Modified for gratuitous replies by Anant Utgikar, 09/16/02. */ //#include #include #include #include #include //#include #define max(a,b) ( (a) > (b) ? (a) : (b) ) #define CURRENT_TIME Scheduler::instance().clock() //#define DEBUG //#define ERROR #ifdef DEBUG static int extra_route_reply = 0; static int limit_route_request = 0; static int route_request = 0; #endif /* TCL Hooks */ int hdr_aodv::offset_; static class AODVHeaderClass : public PacketHeaderClass { public: AODVHeaderClass() : PacketHeaderClass("PacketHeader/AODV", sizeof(hdr_all_aodv)) { bind_offset(&hdr_aodv::offset_); } } class_rtProtoAODV_hdr; static class AODVclass : public TclClass { public: AODVclass() : TclClass("Agent/AODV") {} TclObject* create(int argc, const char*const* argv) { assert(argc == 5); //return (new AODV((nsaddr_t) atoi(argv[4]))); return (new AODV((nsaddr_t) Address::instance().str2addr(argv[4]))); } } class_rtProtoAODV; int AODV::command(int argc, const char*const* argv) { if(argc == 2) { Tcl& tcl = Tcl::instance(); if(strncasecmp(argv[1], "id", 2) == 0) { tcl.resultf("%d", index); return TCL_OK; } if(strncasecmp(argv[1], "start", 2) == 0) { btimer.handle((Event*) 0); #ifndef AODV_LINK_LAYER_DETECTION htimer.handle((Event*) 0); ntimer.handle((Event*) 0); #endif // LINK LAYER DETECTION rtimer.handle((Event*) 0); return TCL_OK; } } else if(argc == 3) { if(strcmp(argv[1], "index") == 0) { index = atoi(argv[2]); return TCL_OK; } else if(strcmp(argv[1], "log-target") == 0 || strcmp(argv[1], "tracetarget") == 0) { logtarget = (Trace*) TclObject::lookup(argv[2]); if(logtarget == 0) return TCL_ERROR; return TCL_OK; } else if(strcmp(argv[1], "drop-target") == 0) { int stat = rqueue.command(argc,argv); if (stat != TCL_OK) return stat; return Agent::command(argc, argv); } else if(strcmp(argv[1], "if-queue") == 0) { ifqueue = (PriQueue*) TclObject::lookup(argv[2]); ifqueuelist[nIfaces]= ifqueue; if (ifqueuelist[nIfaces]) return TCL_OK; return TCL_ERROR; } else if (strcmp(argv[1], "port-dmux") == 0) { dmux_ = (PortClassifier *)TclObject::lookup(argv[2]); if (dmux_ == 0) { fprintf (stderr, "%s: %s lookup of %s failed\n", __FILE__, argv[1], argv[2]); return TCL_ERROR; } return TCL_OK; } //carmen else if(strcmp(argv[1], "node") == 0) { node_= (MobileNode*) TclObject::lookup(argv[2]); if (node_) { return TCL_OK; } return TCL_ERROR; } } //[Ramon] else if (argc == 4){ if(strcmp(argv[1], "if-queue") == 0) { ifqueue = (PriQueue*) TclObject::lookup(argv[3]); int temp_=atoi(argv[2]); if (temp_==nIfaces){ nIfaces++; } ifqueuelist[temp_]= ifqueue; if (ifqueuelist[temp_]){ return TCL_OK; } return TCL_ERROR; } if (strcmp(argv[1],"target")==0 ){ int temp=atoi(argv[2]); if (temp == nIfaces){ nIfaces++; } targetlist[temp]=(NsObject *) TclObject::lookup(argv[3]); if(targetlist[temp]) { return TCL_OK; } return TCL_ERROR; } } return Agent::command(argc, argv); } /* Constructor */ AODV::AODV(nsaddr_t id) : Agent(PT_AODV), btimer(this), htimer(this), ntimer(this), rtimer(this), lrtimer(this), rqueue(),nIfaces(0),ChannelAssignTimer_(this){ index = id; seqno = 2; bid = 1; LIST_INIT(&nbhead); LIST_INIT(&bihead); logtarget = 0; ifqueue = 0; //carmen for (int i=0;iid_purge(); Scheduler::instance().schedule(this, &intr, BCAST_ID_SAVE); } HelloTimer:: HelloTimer(AODV* a) : agent(a) { } void HelloTimer::handle(Event*) { agent->sendHello(); double interval = MinHelloInterval + ((MaxHelloInterval - MinHelloInterval) * Random::uniform()); assert(interval >= 0); Scheduler::instance().schedule(this, &intr, interval); } void NeighborTimer::handle(Event*) { agent->nb_purge(); Scheduler::instance().schedule(this, &intr, HELLO_INTERVAL); } void RouteCacheTimer::handle(Event*) { agent->rt_purge(); #define FREQUENCY 0.5 // sec Scheduler::instance().schedule(this, &intr, FREQUENCY); } void LocalRepairTimer::handle(Event* p) { // SRD: 5/4/99 aodv_rt_entry *rt; struct hdr_ip *ih = HDR_IP( (Packet *)p); /* you get here after the timeout in a local repair attempt */ /* fprintf(stderr, "%s\n", __FUNCTION__); */ rt = agent->rtable.rt_lookup(ih->daddr()); if (rt && rt->rt_flags != RTF_UP) { // route is yet to be repaired // I will be conservative and bring down the route // and send route errors upstream. /* The following assert fails, not sure why */ /* assert (rt->rt_flags == RTF_IN_REPAIR); */ //rt->rt_seqno++; agent->rt_down(rt); // send RERR #ifdef DEBUG fprintf(stderr,"Node %d: Dst - %d, failed local repair\n",index, rt->rt_dst); #endif } Packet::free((Packet *)p); } /*carmen Channel Assignment Timer operation. */ ChannelAssignTimer:: ChannelAssignTimer(AODV* a):TimerHandler() { a_ = a; } void ChannelAssignTimer::expire(Event *) { //c a r m e n a_->ChannelAssign(); resched(0.1); } /* Broadcast ID Management Functions */ void AODV::id_insert(nsaddr_t id, u_int32_t bid) { BroadcastID *b = new BroadcastID(id, bid); assert(b); b->expire = CURRENT_TIME + BCAST_ID_SAVE; LIST_INSERT_HEAD(&bihead, b, link); } /* SRD */ bool AODV::id_lookup(nsaddr_t id, u_int32_t bid) { BroadcastID *b = bihead.lh_first; // Search the list for a match of source and bid for( ; b; b = b->link.le_next) { if ((b->src == id) && (b->id == bid)) return true; } return false; } void AODV::id_purge() { BroadcastID *b = bihead.lh_first; BroadcastID *bn; double now = CURRENT_TIME; for(; b; b = bn) { bn = b->link.le_next; if(b->expire <= now) { LIST_REMOVE(b,link); delete b; } } } /* Helper Functions */ double AODV::PerHopTime(aodv_rt_entry *rt) { int num_non_zero = 0, i; double total_latency = 0.0; if (!rt) return ((double) NODE_TRAVERSAL_TIME ); for (i=0; i < MAX_HISTORY; i++) { if (rt->rt_disc_latency[i] > 0.0) { num_non_zero++; total_latency += rt->rt_disc_latency[i]; } } if (num_non_zero > 0) return(total_latency / (double) num_non_zero); else return((double) NODE_TRAVERSAL_TIME); } /* Link Failure Management Functions */ static void aodv_rt_failed_callback(Packet *p, void *arg) { ((AODV*) arg)->rt_ll_failed(p); } /* * This routine is invoked when the link-layer reports a route failed. */ void AODV::rt_ll_failed(Packet *p) { struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); aodv_rt_entry *rt; nsaddr_t broken_nbr = ch->next_hop_; #ifndef AODV_LINK_LAYER_DETECTION drop(p, DROP_RTR_MAC_CALLBACK); #else /* * Non-data packets and Broadcast Packets can be dropped. */ if(! DATA_PACKET(ch->ptype()) || (u_int32_t) ih->daddr() == IP_BROADCAST) { drop(p, DROP_RTR_MAC_CALLBACK); return; } log_link_broke(p); if((rt = rtable.rt_lookup(ih->daddr())) == 0) { drop(p, DROP_RTR_MAC_CALLBACK); return; } log_link_del(ch->next_hop_); #ifdef AODV_LOCAL_REPAIR /* if the broken link is closer to the dest than source, attempt a local repair. Otherwise, bring down the route. */ if (ch->num_forwards() > rt->rt_hops) { local_rt_repair(rt, p); // local repair // retrieve all the packets in the ifq using this link, // queue the packets for which local repair is done, return; } else #endif // LOCAL REPAIR { drop(p, DROP_RTR_MAC_CALLBACK); // Do the same thing for other packets in the interface queue using the // broken link -Mahesh while((p = ifqueue->filter(broken_nbr))) { drop(p, DROP_RTR_MAC_CALLBACK); } nb_delete(broken_nbr); } #endif // LINK LAYER DETECTION } void AODV::handle_link_failure(nsaddr_t id) { aodv_rt_entry *rt, *rtn; Packet *rerr = Packet::alloc(); struct hdr_aodv_error *re = HDR_AODV_ERROR(rerr); re->DestCount = 0; for(rt = rtable.head(); rt; rt = rtn) { // for each rt entry rtn = rt->rt_link.le_next; if ((rt->rt_hops != INFINITY2) && (rt->rt_nexthop == id) ) { assert (rt->rt_flags == RTF_UP); assert((rt->rt_seqno%2) == 0); rt->rt_seqno++; re->unreachable_dst[re->DestCount] = rt->rt_dst; re->unreachable_dst_seqno[re->DestCount] = rt->rt_seqno; #ifdef DEBUG fprintf(stderr, "%s(%f): %d\t(%d\t%u\t%d)\n", __FUNCTION__, CURRENT_TIME, index, re->unreachable_dst[re->DestCount], re->unreachable_dst_seqno[re->DestCount], rt->rt_nexthop); #endif // DEBUG re->DestCount += 1; rt_down(rt); } // remove the lost neighbor from all the precursor lists rt->pc_delete(id); } if (re->DestCount > 0) { #ifdef DEBUG fprintf(stderr, "%s(%f): %d\tsending RERR...\n", __FUNCTION__, CURRENT_TIME, index); #endif // DEBUG sendError(rerr, false); } else { Packet::free(rerr); } } void AODV::local_rt_repair(aodv_rt_entry *rt, Packet *p) { #ifdef DEBUG fprintf(stderr,"%s: Dst - %d\n", __FUNCTION__, rt->rt_dst); #endif // Buffer the packet rqueue.enque(p); // mark the route as under repair rt->rt_flags = RTF_IN_REPAIR; sendRequest(rt->rt_dst); // set up a timer interrupt // printf("local_rt_repair\n"); Scheduler::instance().schedule(&lrtimer, p->copy(), rt->rt_req_timeout); } void AODV::rt_update(aodv_rt_entry *rt, u_int32_t seqnum, u_int16_t metric, nsaddr_t nexthop, double expire_time) { rt->rt_seqno = seqnum; rt->rt_hops = metric; rt->rt_flags = RTF_UP; rt->rt_nexthop = nexthop; rt->rt_expire = expire_time; } void AODV::rt_down(aodv_rt_entry *rt) { /* * Make sure that you don't "down" a route more than once. */ if(rt->rt_flags == RTF_DOWN) { return; } // assert (rt->rt_seqno%2); // is the seqno odd? rt->rt_last_hop_count = rt->rt_hops; rt->rt_hops = INFINITY2; rt->rt_flags = RTF_DOWN; rt->rt_nexthop = 0; rt->rt_expire = 0; } /* rt_down function */ /* Route Handling Functions */ void AODV::rt_resolve(Packet *p) { struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); aodv_rt_entry *rt; /* * Set the transmit failure callback. That * won't change. */ ch->xmit_failure_ = aodv_rt_failed_callback; ch->xmit_failure_data_ = (void*) this; rt = rtable.rt_lookup(ih->daddr()); if(rt == 0) { rt = rtable.rt_add(ih->daddr()); } /* * If the route is up, forward the packet */ if(rt->rt_flags == RTF_UP) { assert(rt->rt_hops != INFINITY2); forward(rt, p, NO_DELAY); } /* * if I am the source of the packet, then do a Route Request. */ else if(ih->saddr() == index) { rqueue.enque(p); sendRequest(rt->rt_dst); } /* * A local repair is in progress. Buffer the packet. */ else if (rt->rt_flags == RTF_IN_REPAIR) { rqueue.enque(p); } /* * I am trying to forward a packet for someone else to which * I don't have a route. */ else { Packet *rerr = Packet::alloc(); struct hdr_aodv_error *re = HDR_AODV_ERROR(rerr); /* * For now, drop the packet and send error upstream. * Now the route errors are broadcast to upstream * neighbors - Mahesh 09/11/99 */ assert (rt->rt_flags == RTF_DOWN); re->DestCount = 0; re->unreachable_dst[re->DestCount] = rt->rt_dst; re->unreachable_dst_seqno[re->DestCount] = rt->rt_seqno; re->DestCount += 1; #ifdef DEBUG fprintf(stderr, "%s: sending RERR...\n", __FUNCTION__); #endif sendError(rerr, false); drop(p, DROP_RTR_NO_ROUTE); } } void AODV::rt_purge() { aodv_rt_entry *rt, *rtn; double now = CURRENT_TIME; double delay = 0.0; Packet *p; for(rt = rtable.head(); rt; rt = rtn) { // for each rt entry rtn = rt->rt_link.le_next; if ((rt->rt_flags == RTF_UP) && (rt->rt_expire < now)) { // if a valid route has expired, purge all packets from // send buffer and invalidate the route. assert(rt->rt_hops != INFINITY2); while((p = rqueue.deque(rt->rt_dst))) { #ifdef DEBUG fprintf(stderr, "%s: calling drop()\n", __FUNCTION__); #endif // DEBUG drop(p, DROP_RTR_NO_ROUTE); } rt->rt_seqno++; assert (rt->rt_seqno%2); rt_down(rt); } else if (rt->rt_flags == RTF_UP) { // If the route is not expired, // and there are packets in the sendbuffer waiting, // forward them. This should not be needed, but this extra // check does no harm. assert(rt->rt_hops != INFINITY2); while((p = rqueue.deque(rt->rt_dst))) { printf("rt_purge() is called 2................\n"); //carmen printf("node %d forward 2 HDR_CMN(p)->iface()=%d\n",node_->nodeid(),HDR_CMN(p)->iface()); forward (rt, p, delay); delay += ARP_DELAY; } } else if (rqueue.find(rt->rt_dst)) // If the route is down and // if there is a packet for this destination waiting in // the sendbuffer, then send out route request. sendRequest // will check whether it is time to really send out request // or not. // This may not be crucial to do it here, as each generated // packet will do a sendRequest anyway. // printf("rt_purge() is called sendRequest\n"); sendRequest(rt->rt_dst); } } /* Packet Reception Routines */ void AODV::recv(Packet *p, Handler*) { struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); assert(initialized()); //assert(p->incoming == 0); // XXXXX NOTE: use of incoming flag has been depracated; In order to track direction of pkt flow, direction_ in hdr_cmn is used instead. see packet.h for details. if(ch->ptype() == PT_AODV) { ih->ttl_ -= 1; recvAODV(p); return; } /* * Must be a packet I'm originating... */ if((ih->saddr() == index) && (ch->num_forwards() == 0)) { /* * Add the IP Header */ ch->size() += IP_HDR_LEN; // Added by Parag Dadhania && John Novatnack to handle broadcasting if ( (u_int32_t)ih->daddr() != IP_BROADCAST) ih->ttl_ = NETWORK_DIAMETER; } /* * I received a packet that I sent. Probably * a routing loop. */ else if(ih->saddr() == index) { drop(p, DROP_RTR_ROUTE_LOOP); return; } /* * Packet I'm forwarding... */ else { /* * Check the TTL. If it is zero, then discard. */ if(--ih->ttl_ == 0) { drop(p, DROP_RTR_TTL); return; } } // Added by Parag Dadhania && John Novatnack to handle broadcasting if ( (u_int32_t)ih->daddr() != IP_BROADCAST) { rt_resolve(p); } else { forward((aodv_rt_entry*) 0, p, NO_DELAY); } } void AODV::recvAODV(Packet *p) { struct hdr_aodv *ah = HDR_AODV(p); assert(HDR_IP (p)->sport() == RT_PORT); assert(HDR_IP (p)->dport() == RT_PORT); /* * Incoming Packets. */ switch(ah->ah_type) { case AODVTYPE_RREQ: recvRequest(p); break; case AODVTYPE_RREP: recvReply(p); break; case AODVTYPE_RERR: recvError(p); break; case AODVTYPE_HELLO: recvHello(p); break; case AODVTYPE_HELLO_ACK: recvACK(p); break; default: fprintf(stderr, "Invalid AODV type (%x)\n", ah->ah_type); exit(1); } } void AODV::recvRequest(Packet *p) { struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_request *rq = HDR_AODV_REQUEST(p); aodv_rt_entry *rt; /* * Drop if: * - I'm the source * - I recently heard this request. */ if(rq->rq_src == index) { #ifdef DEBUG fprintf(stderr, "%s: got my own REQUEST\n", __FUNCTION__); #endif // DEBUG Packet::free(p); return; } if (id_lookup(rq->rq_src, rq->rq_bcast_id)) { #ifdef DEBUG fprintf(stderr, "%s: discarding request\n", __FUNCTION__); #endif // DEBUG Packet::free(p); return; } /* * Cache the broadcast ID */ id_insert(rq->rq_src, rq->rq_bcast_id); /* * We are either going to forward the REQUEST or generate a * REPLY. Before we do anything, we make sure that the REVERSE * route is in the route table. */ aodv_rt_entry *rt0; // rt0 is the reverse route rt0 = rtable.rt_lookup(rq->rq_src); if(rt0 == 0) { /* if not in the route table */ // create an entry for the reverse route. rt0 = rtable.rt_add(rq->rq_src); } rt0->rt_expire = max(rt0->rt_expire, (CURRENT_TIME + REV_ROUTE_LIFE)); //carmen add the interface for the source. if(nIfaces){ //default is already 0, no need to add else //revised for interface 11/27/2007 rt0->rt_if=HDR_CMN(p)->localif(); } if ( (rq->rq_src_seqno > rt0->rt_seqno ) || ((rq->rq_src_seqno == rt0->rt_seqno) && (rq->rq_hop_count < rt0->rt_hops)) ) { // If we have a fresher seq no. or lesser #hops for the // same seq no., update the rt entry. Else don't bother. rt_update(rt0, rq->rq_src_seqno, rq->rq_hop_count, ih->saddr(), max(rt0->rt_expire, (CURRENT_TIME + REV_ROUTE_LIFE)) ); if (rt0->rt_req_timeout > 0.0) { // Reset the soft state and // Set expiry time to CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT // This is because route is used in the forward direction, // but only sources get benefited by this change rt0->rt_req_cnt = 0; rt0->rt_req_timeout = 0.0; rt0->rt_req_last_ttl = rq->rq_hop_count; rt0->rt_expire = CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT; } /* Find out whether any buffered packet can benefit from the * reverse route. * May need some change in the following code - Mahesh 09/11/99 */ assert (rt0->rt_flags == RTF_UP); Packet *buffered_pkt; while ((buffered_pkt = rqueue.deque(rt0->rt_dst))) { if (rt0 && (rt0->rt_flags == RTF_UP)) { assert(rt0->rt_hops != INFINITY2); forward(rt0, buffered_pkt, NO_DELAY); } } } // End for putting reverse route in rt table /* * We have taken care of the reverse route stuff. * Now see whether we can send a route reply. */ rt = rtable.rt_lookup(rq->rq_dst); // First check if I am the destination .. if(rq->rq_dst == index) { #ifdef DEBUG fprintf(stderr, "%d - %s: destination sending reply\n", index, __FUNCTION__); #endif // DEBUG // Just to be safe, I use the max. Somebody may have // incremented the dst seqno. seqno = max(seqno, rq->rq_dst_seqno)+1; if (seqno%2) seqno++; sendReply(rq->rq_src, // IP Destination 1, // Hop Count index, // Dest IP Address seqno, // Dest Sequence Num MY_ROUTE_TIMEOUT, // Lifetime rq->rq_timestamp); // timestamp Packet::free(p); } // I am not the destination, but I may have a fresh enough route. else if (rt && (rt->rt_hops != INFINITY2) && (rt->rt_seqno >= rq->rq_dst_seqno) ) { //assert (rt->rt_flags == RTF_UP); assert(rq->rq_dst == rt->rt_dst); //assert ((rt->rt_seqno%2) == 0); // is the seqno even? sendReply(rq->rq_src, rt->rt_hops + 1, rq->rq_dst, rt->rt_seqno, (u_int32_t) (rt->rt_expire - CURRENT_TIME), // rt->rt_expire - CURRENT_TIME, rq->rq_timestamp); // Insert nexthops to RREQ source and RREQ destination in the // precursor lists of destination and source respectively rt->pc_insert(rt0->rt_nexthop); // nexthop to RREQ source rt0->pc_insert(rt->rt_nexthop); // nexthop to RREQ destination #ifdef RREQ_GRAT_RREP sendReply(rq->rq_dst, rq->rq_hop_count, rq->rq_src, rq->rq_src_seqno, (u_int32_t) (rt->rt_expire - CURRENT_TIME), // rt->rt_expire - CURRENT_TIME, rq->rq_timestamp); #endif // TODO: send grat RREP to dst if G flag set in RREQ using rq->rq_src_seqno, rq->rq_hop_counT // DONE: Included gratuitous replies to be sent as per IETF aodv draft specification. As of now, G flag has not been dynamically used and is always set or reset in aodv-packet.h --- Anant Utgikar, 09/16/02. Packet::free(p); } /* * Can't reply. So forward the Route Request */ else { ih->saddr() = index; ih->daddr() = IP_BROADCAST; rq->rq_hop_count += 1; // Maximum sequence number seen en route if (rt) rq->rq_dst_seqno = max(rt->rt_seqno, rq->rq_dst_seqno); forward((aodv_rt_entry*) 0, p, DELAY); } } void AODV::recvReply(Packet *p) { //struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_reply *rp = HDR_AODV_REPLY(p); aodv_rt_entry *rt; char suppress_reply = 0; double delay = 0.0; #ifdef DEBUG fprintf(stderr, "%d - %s: received a REPLY\n", index, __FUNCTION__); #endif // DEBUG /* * Got a reply. So reset the "soft state" maintained for * route requests in the request table. We don't really have * have a separate request table. It is just a part of the * routing table itself. */ // Note that rp_dst is the dest of the data packets, not the // the dest of the reply, which is the src of the data packets. rt = rtable.rt_lookup(rp->rp_dst); /* * If I don't have a rt entry to this host... adding */ if(rt == 0) { rt = rtable.rt_add(rp->rp_dst); } /* * Add a forward route table entry... here I am following * Perkins-Royer AODV paper almost literally - SRD 5/99 */ if ( (rt->rt_seqno < rp->rp_dst_seqno) || // newer route ((rt->rt_seqno == rp->rp_dst_seqno) && (rt->rt_hops > rp->rp_hop_count)) ) { // shorter or better route // Update the rt entry rt_update(rt, rp->rp_dst_seqno, rp->rp_hop_count, rp->rp_src, CURRENT_TIME + rp->rp_lifetime); // reset the soft state rt->rt_req_cnt = 0; rt->rt_req_timeout = 0.0; rt->rt_req_last_ttl = rp->rp_hop_count; if (ih->daddr() == index) { // If I am the original source // Update the route discovery latency statistics // rp->rp_timestamp is the time of request origination rt->rt_disc_latency[(unsigned char)rt->hist_indx] = (CURRENT_TIME - rp->rp_timestamp) / (double) rp->rp_hop_count; // increment indx for next time rt->hist_indx = (rt->hist_indx + 1) % MAX_HISTORY; } /* * Send all packets queued in the sendbuffer destined for * this destination. * XXX - observe the "second" use of p. */ Packet *buf_pkt; while((buf_pkt = rqueue.deque(rt->rt_dst))) { if(rt->rt_hops != INFINITY2) { assert (rt->rt_flags == RTF_UP); // Delay them a little to help ARP. Otherwise ARP // may drop packets. -SRD 5/23/99 forward(rt, buf_pkt, delay); delay += ARP_DELAY; } } } else { suppress_reply = 1; } /* * If reply is for me, discard it. */ if(ih->daddr() == index || suppress_reply) { Packet::free(p); } /* * Otherwise, forward the Route Reply. */ else { // Find the rt entry aodv_rt_entry *rt0 = rtable.rt_lookup(ih->daddr()); // If the rt is up, forward if(rt0 && (rt0->rt_hops != INFINITY2)) { assert (rt0->rt_flags == RTF_UP); rp->rp_hop_count += 1; rp->rp_src = index; forward(rt0, p, NO_DELAY); // Insert the nexthop towards the RREQ source to // the precursor list of the RREQ destination rt->pc_insert(rt0->rt_nexthop); // nexthop to RREQ source } else { // I don't know how to forward .. drop the reply. #ifdef DEBUG fprintf(stderr, "%s: dropping Route Reply\n", __FUNCTION__); #endif // DEBUG drop(p, DROP_RTR_NO_ROUTE); } } } void AODV::recvError(Packet *p) { struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_error *re = HDR_AODV_ERROR(p); aodv_rt_entry *rt; u_int8_t i; Packet *rerr = Packet::alloc(); struct hdr_aodv_error *nre = HDR_AODV_ERROR(rerr); nre->DestCount = 0; for (i=0; iDestCount; i++) { // For each unreachable destination rt = rtable.rt_lookup(re->unreachable_dst[i]); if ( rt && (rt->rt_hops != INFINITY2) && (rt->rt_nexthop == ih->saddr()) && (rt->rt_seqno <= re->unreachable_dst_seqno[i]) ) { assert(rt->rt_flags == RTF_UP); assert((rt->rt_seqno%2) == 0); // is the seqno even? #ifdef DEBUG fprintf(stderr, "%s(%f): %d\t(%d\t%u\t%d)\t(%d\t%u\t%d)\n", __FUNCTION__,CURRENT_TIME, index, rt->rt_dst, rt->rt_seqno, rt->rt_nexthop, re->unreachable_dst[i],re->unreachable_dst_seqno[i], ih->saddr()); #endif // DEBUG rt->rt_seqno = re->unreachable_dst_seqno[i]; rt_down(rt); // Not sure whether this is the right thing to do Packet *pkt; while((pkt = ifqueue->filter(ih->saddr()))) { drop(pkt, DROP_RTR_MAC_CALLBACK); } // if precursor list non-empty add to RERR and delete the precursor list if (!rt->pc_empty()) { nre->unreachable_dst[nre->DestCount] = rt->rt_dst; nre->unreachable_dst_seqno[nre->DestCount] = rt->rt_seqno; nre->DestCount += 1; rt->pc_delete(); } } } if (nre->DestCount > 0) { #ifdef DEBUG fprintf(stderr, "%s(%f): %d\t sending RERR...\n", __FUNCTION__, CURRENT_TIME, index); #endif // DEBUG sendError(rerr); } else { Packet::free(rerr); } Packet::free(p); } /* Packet Transmission Routines */ void AODV::forward(aodv_rt_entry *rt, Packet *p, double delay) { struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); if(ih->ttl_ == 0) { #ifdef DEBUG fprintf(stderr, "%s: calling drop()\n", __PRETTY_FUNCTION__); #endif // DEBUG drop(p, DROP_RTR_TTL); return; } if (ch->ptype() != PT_AODV && ch->direction() == hdr_cmn::UP && ((u_int32_t)ih->daddr() == IP_BROADCAST) || (ih->daddr() == here_.addr_)) { dmux_->recv(p,0); return; } int dstif=0; if (rt) { assert(rt->rt_flags == RTF_UP); rt->rt_expire = CURRENT_TIME + ACTIVE_ROUTE_TIMEOUT; ch->next_hop_ = rt->rt_nexthop; ch->addr_type() = NS_AF_INET; ch->direction() = hdr_cmn::DOWN; //important: change the packet's direction } else { // if it is a broadcast packet // assert(ch->ptype() == PT_AODV); // maybe a diff pkt type like gaf assert(ih->daddr() == (nsaddr_t) IP_BROADCAST); ch->addr_type() = NS_AF_NONE; ch->direction() = hdr_cmn::DOWN; //important: change the packet's direction } if (ih->daddr() == (nsaddr_t) IP_BROADCAST) { // If it is a broadcast packet assert(rt == 0); /* * Jitter the sending of broadcast packets by 10ms */ //carmen if(nIfaces) { /* for(int i=0;icopy(); Scheduler::instance().schedule(targetlist[i], p_copy, 0.01 * Random::uniform()); } */ Scheduler::instance().schedule(targetlist[0], p, 0.01 * Random::uniform()); } else { Scheduler::instance().schedule(target_, p, 0.01 * Random::uniform()); } } else { // Not a broadcast packet if(delay > 0.0) { if(nIfaces) { Scheduler::instance().schedule(targetlist[rt->rt_if], p, delay); } else { Scheduler::instance().schedule(target_, p, delay); } } else { // Not a broadcast packet, no delay, send immediately if(nIfaces) { Scheduler::instance().schedule(targetlist[rt->rt_if], p, 0); } else { Scheduler::instance().schedule(target_, p, 0); } } } } void AODV::sendRequest(nsaddr_t dst) { // Allocate a RREQ packet Packet *p = Packet::alloc(); struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_request *rq = HDR_AODV_REQUEST(p); aodv_rt_entry *rt = rtable.rt_lookup(dst); assert(rt); /* * Rate limit sending of Route Requests. We are very conservative * about sending out route requests. */ if (rt->rt_flags == RTF_UP) { assert(rt->rt_hops != INFINITY2); Packet::free((Packet *)p); return; } if (rt->rt_req_timeout > CURRENT_TIME) { Packet::free((Packet *)p); return; } // rt_req_cnt is the no. of times we did network-wide broadcast // RREQ_RETRIES is the maximum number we will allow before // going to a long timeout. if (rt->rt_req_cnt > RREQ_RETRIES) { rt->rt_req_timeout = CURRENT_TIME + MAX_RREQ_TIMEOUT; rt->rt_req_cnt = 0; Packet *buf_pkt; while ((buf_pkt = rqueue.deque(rt->rt_dst))) { drop(buf_pkt, DROP_RTR_NO_ROUTE); } Packet::free((Packet *)p); return; } #ifdef DEBUG fprintf(stderr, "(%2d) - %2d sending Route Request, dst: %d\n", ++route_request, index, rt->rt_dst); #endif // DEBUG // Determine the TTL to be used this time. // Dynamic TTL evaluation - SRD rt->rt_req_last_ttl = max(rt->rt_req_last_ttl,rt->rt_last_hop_count); if (0 == rt->rt_req_last_ttl) { // first time query broadcast ih->ttl_ = TTL_START; } else { // Expanding ring search. if (rt->rt_req_last_ttl < TTL_THRESHOLD) ih->ttl_ = rt->rt_req_last_ttl + TTL_INCREMENT; else { // network-wide broadcast ih->ttl_ = NETWORK_DIAMETER; rt->rt_req_cnt += 1; } } // remember the TTL used for the next time rt->rt_req_last_ttl = ih->ttl_; // PerHopTime is the roundtrip time per hop for route requests. // The factor 2.0 is just to be safe .. SRD 5/22/99 // Also note that we are making timeouts to be larger if we have // done network wide broadcast before. rt->rt_req_timeout = 2.0 * (double) ih->ttl_ * PerHopTime(rt); if (rt->rt_req_cnt > 0) rt->rt_req_timeout *= rt->rt_req_cnt; rt->rt_req_timeout += CURRENT_TIME; // Don't let the timeout to be too large, however .. SRD 6/8/99 if (rt->rt_req_timeout > CURRENT_TIME + MAX_RREQ_TIMEOUT) rt->rt_req_timeout = CURRENT_TIME + MAX_RREQ_TIMEOUT; rt->rt_expire = 0; #ifdef DEBUG fprintf(stderr, "(%2d) - %2d sending Route Request, dst: %d, tout %f ms\n", ++route_request, index, rt->rt_dst, rt->rt_req_timeout - CURRENT_TIME); #endif // DEBUG // Fill out the RREQ packet // ch->uid() = 0; ch->ptype() = PT_AODV; ch->size() = IP_HDR_LEN + rq->size(); //carmen ch->iface() = -2; ch->error() = 0; ch->addr_type() = NS_AF_NONE; ch->prev_hop_ = index; // AODV hack ih->saddr() = index; ih->daddr() = IP_BROADCAST; ih->sport() = RT_PORT; ih->dport() = RT_PORT; // Fill up some more fields. rq->rq_type = AODVTYPE_RREQ; rq->rq_hop_count = 1; rq->rq_bcast_id = bid++; rq->rq_dst = dst; rq->rq_dst_seqno = (rt ? rt->rt_seqno : 0); rq->rq_src = index; seqno += 2; assert ((seqno%2) == 0); rq->rq_src_seqno = seqno; rq->rq_timestamp = CURRENT_TIME; if(nIfaces){ //carmen //send over every interface /* for(int i=0;icopy(); Scheduler::instance().schedule(targetlist[i], p_copy, 0.); } */ Scheduler::instance().schedule(targetlist[0], p, 0.); } else { Scheduler::instance().schedule(target_, p, 0.); } } void AODV:: sendReply(nsaddr_t ipdst, u_int32_t hop_count, nsaddr_t rpdst, u_int32_t rpseq, u_int32_t lifetime, double timestamp) { Packet *p = Packet::alloc(); struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_reply *rp = HDR_AODV_REPLY(p); aodv_rt_entry *rt = rtable.rt_lookup(ipdst); #ifdef DEBUG fprintf(stderr, "sending Reply from %d at %.2f\n", index, Scheduler::instance().clock()); #endif // DEBUG assert(rt); int dstif=0; rp->rp_type = AODVTYPE_RREP; //rp->rp_flags = 0x00; rp->rp_hop_count = hop_count; rp->rp_dst = rpdst; rp->rp_dst_seqno = rpseq; rp->rp_src = index; rp->rp_lifetime = lifetime; rp->rp_timestamp = timestamp; // ch->uid() = 0; ch->ptype() = PT_AODV; ch->size() = IP_HDR_LEN + rp->size(); ch->error() = 0; ch->addr_type() = NS_AF_INET; ch->next_hop_ = rt->rt_nexthop; ch->prev_hop_ = index; // AODV hack ch->direction() = hdr_cmn::DOWN; ih->saddr() = index; ih->daddr() = ipdst; ih->sport() = RT_PORT; ih->dport() = RT_PORT; ih->ttl_ = NETWORK_DIAMETER; //carmen if(nIfaces) { Scheduler::instance().schedule(targetlist[rt->rt_if], p, 0.); } else { Scheduler::instance().schedule(target_, p, 0.); } } void AODV::sendError(Packet *p, bool jitter) { struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_error *re = HDR_AODV_ERROR(p); #ifdef ERROR fprintf(stderr, "sending Error from %d at %.2f\n", index, Scheduler::instance().clock()); #endif // DEBUG re->re_type = AODVTYPE_RERR; //re->reserved[0] = 0x00; re->reserved[1] = 0x00; // DestCount and list of unreachable destinations are already filled // ch->uid() = 0; ch->ptype() = PT_AODV; ch->size() = IP_HDR_LEN + re->size(); //carmen broadcast packet ch->iface() = -2; ch->error() = 0; ch->addr_type() = NS_AF_NONE; ch->next_hop_ = 0; ch->prev_hop_ = index; // AODV hack ch->direction() = hdr_cmn::DOWN; //important: change the packet's direction ih->saddr() = index; ih->daddr() = IP_BROADCAST; ih->sport() = RT_PORT; ih->dport() = RT_PORT; ih->ttl_ = 1; // Do we need any jitter? Yes if (jitter) { // printf("sendError.......schedule1\n"); if(nIfaces) { //carmen for(int i=0;icopy(); Scheduler::instance().schedule(targetlist[i], p_copy, 0.01*Random::uniform()); } } else { Scheduler::instance().schedule(target_, p, 0.01*Random::uniform()); } } else { //carmen if(nIfaces){ for(int i=0;icopy(); Scheduler::instance().schedule(targetlist[i], p_copy, 0.0); } } else { Scheduler::instance().schedule(target_, p, 0.0); } } } /* Neighbor Management Functions */ void AODV::sendHello() { Packet *p = Packet::alloc(); struct hdr_cmn *ch = HDR_CMN(p); struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_reply *rh = HDR_AODV_REPLY(p); #ifdef DEBUG fprintf(stderr, "sending Hello from %d at %.2f\n", index, Scheduler::instance().clock()); #endif // DEBUG rh->rp_type = AODVTYPE_HELLO; //rh->rp_flags = 0x00; rh->rp_hop_count = 1; rh->rp_dst = index; rh->rp_dst_seqno = seqno; rh->rp_lifetime = (1 + ALLOWED_HELLO_LOSS) * HELLO_INTERVAL; // ch->uid() = 0; ch->ptype() = PT_AODV; ch->size() = IP_HDR_LEN + rh->size(); //carmen broadcast packet ch->iface() = -2; ch->error() = 0; ch->addr_type() = NS_AF_NONE; ch->prev_hop_ = index; // AODV hack ih->saddr() = index; ih->daddr() = IP_BROADCAST; ih->sport() = RT_PORT; ih->dport() = RT_PORT; ih->ttl_ = 1; if(nIfaces) { //carmen //should sent to each interface for the broadcast one for(int i=0;icopy(); Scheduler::instance().schedule(targetlist[i], p_copy, 0.0); } } else { Scheduler::instance().schedule(target_, p, 0.0); } } void AODV::recvHello(Packet *p) { //struct hdr_ip *ih = HDR_IP(p); struct hdr_aodv_reply *rp = HDR_AODV_REPLY(p); AODV_Neighbor *nb; struct hdr_cmn *chtemp = HDR_CMN(p); //carmen //use reply ack to build hello ack Packet *pack = Packet::alloc(); struct hdr_cmn *ch = HDR_CMN(pack); struct hdr_ip *ih = HDR_IP(pack); struct hdr_aodv_rrep_ack *rpack=HDR_AODV_RREP_ACK(pack); nb = nb_lookup(rp->rp_dst); if(nb == 0) { nb_insert(rp->rp_dst); } else { nb->nb_expire = CURRENT_TIME + (1.5 * ALLOWED_HELLO_LOSS * HELLO_INTERVAL); } //carmen //build hello ack rpack->rpack_type=AODVTYPE_HELLO_ACK; rpack->RxPr=p->txinfo_.RxPr; //store the RxPr ch->ptype() = PT_AODV; ch->size() = IP_HDR_LEN + rpack->size(); ch->iface() = -2; ch->error() = 0; ch->addr_type() = NS_AF_NONE; ch->next_hop_ = rp->rp_dst; ch->prev_hop_ = index; // AODV hack ch->direction() = hdr_cmn::DOWN; //important: change the packet's direction ih->saddr() = index; ih->daddr() = rp->rp_dst; ih->sport() = RT_PORT; ih->dport() = RT_PORT; ih->ttl_ = 1; //carmen if(nIfaces) { int ifacetemp=chtemp->localif(); Packet::free(p); Scheduler::instance().schedule(targetlist[ifacetemp], pack, 0.); } else { Packet::free(p); Scheduler::instance().schedule(target_, pack, 0.); } } void AODV::nb_insert(nsaddr_t id) { AODV_Neighbor *nb = new AODV_Neighbor(id); assert(nb); nb->nb_expire = CURRENT_TIME + (1.5 * ALLOWED_HELLO_LOSS * HELLO_INTERVAL); LIST_INSERT_HEAD(&nbhead, nb, nb_link); seqno += 2; // set of neighbors changed assert ((seqno%2) == 0); } AODV_Neighbor* AODV::nb_lookup(nsaddr_t id) { AODV_Neighbor *nb = nbhead.lh_first; for(; nb; nb = nb->nb_link.le_next) { if(nb->nb_addr == id) break; } return nb; } /* * Called when we receive *explicit* notification that a Neighbor * is no longer reachable. */ void AODV::nb_delete(nsaddr_t id) { AODV_Neighbor *nb = nbhead.lh_first; log_link_del(id); seqno += 2; // Set of neighbors changed assert ((seqno%2) == 0); for(; nb; nb = nb->nb_link.le_next) { if(nb->nb_addr == id) { LIST_REMOVE(nb,nb_link); delete nb; break; } } handle_link_failure(id); } /* * Purges all timed-out Neighbor Entries - runs every * HELLO_INTERVAL * 1.5 seconds. */ void AODV::nb_purge() { AODV_Neighbor *nb = nbhead.lh_first; AODV_Neighbor *nbn; double now = CURRENT_TIME; for(; nb; nb = nbn) { nbn = nb->nb_link.le_next; if(nb->nb_expire <= now) { nb_delete(nb->nb_addr); } } } //carmen //Change the next hop interface void AODV::UpdateIf(aodv_rt_entry *rt,int newif){ rt->rt_if=newif; } //Channel Assignment Function //carmen //just an example //no use now... void AODV::ChannelAssign(){ //assign the interface based on greedy algorithm //choose the channel with least interference. //look through the route table to find the route //with same next hop id. AODV_Neighbor *nb = nbhead.lh_first; AODV_Neighbor *nbn; aodv_rt_entry *rt; int sendIf=0; double currentIfPr=0; //update routing table for each neighbor for(; nb; nb = nbn) { nbn = nb->nb_link.le_next; //first get the routing entry for neighbor node //then get the current if for the neighbor node rt=rtable.rt_lookup(nb->nb_addr); if(rt) { sendIf=rt->rt_if; //get the current RxPr by the neighbor node on the current if currentIfPr= nbchannelRxPr[nb->nb_addr][sendIf]; //Find the channel with larger RxPr. for(int i=0;i<12;i++) { if (currentIfPrnb_addr][i]) { currentIfPr=nbchannelRxPr[nb->nb_addr][i]; sendIf=i; } } if(sendIf!=rt->rt_if) { //find a better channel, update the routing table //carmen temp change Feb. 2008 rtable.rt_nexthop_if_change(nb->nb_addr,sendIf); } } } //for each neighbor } void AODV::sendAck(void) { } //carmen void AODV::recvACK(Packet *p){ //receive ack for hello from neighbor //update channel status for this neighbor. //check whether this packet belongs to neighbor or not AODV_Neighbor *nb; struct hdr_ip *ih = HDR_IP(p); struct hdr_cmn *ch = HDR_CMN(p); struct hdr_aodv_rrep_ack *rpack=HDR_AODV_RREP_ACK(p); //look up whether the ack for hello is from one of neighbors nb = nb_lookup(ih->saddr()); if(nb) { //only if nIfaces is defined if(nIfaces){ //revised on 11/27/2007 for interface int iface=HDR_CMN(p)->localif(); nbchannelRxPr[ih->daddr()][iface]= rpack->RxPr; } } //free the ACK packet Packet::free(p); }