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Abstract 
Julep is an object-oriented testbed designed for 

implementation and analysis of process recovery 
protocols.  It is written in Java, and runs as a layer 
underneath a Java-based distributed application. 
Only minor modifications to a typical distributed 
application are necessary to use Julep as a commu-
nication mechanism.  Julep is designed to allow new 
process recovery mechanisms to be quickly incorpo-
rated, permitting accurate comparison between 
mechanisms for specific distributed applications on 
specific hardware platforms. A novel aspect of Julep 
is its UDP-based object communication service, 
which implements “unbreakable” communication 
channels. Julep can be used as a testbed to compare 
the performance of particular recovery mechanisms, 
as a framework within which new recovery mecha-
nisms can be implemented and tested, or as an infra-
structure to make existing distributed applications 
fault tolerant. In its most basic form, Julep can be 
used as a reliable object-based communication ser-
vice. 
 

1. Introduction 

Software fault-tolerance protocols based on 
process recovery have been under development for 
over twenty years. Research in this area has matured 
to the point where developers are often required to 
offer guarantees of reliability for recovery of failed 
processes in distributed applications, and rightly so. 
With current knowledge, throwing out the interim 
processing of a distributed application because a few 
processes have failed and must be restarted is simply 
wasteful. 

Many software mechanisms have been devel-
oped that can be combined in various ways to imple-
ment a wide variety of these protocols. Julep was 
designed to study temporal diversity protocols that 

rely on a fail-stop node model. Individual mecha-
nisms developed for temporal diversity process re-
covery, such as logical and vector clocks, various 
types of message logging and checkpointing, as well 
as the process recovery protocols that can be created 
from these mechanisms are fully described in [5] and 
[6]. Each protocol that has been developed offers its 
own set of guarantees regarding the process failure 
scenarios it can handle. Each protocol also incurs two 
different sets of overhead costs: one for standard op-
eration, and one for operation during the recovery of 
a process. 

Rigorous analysis and comparison of process re-
covery protocols in terms of their overhead costs in 
specific settings is slowed by the fact that the set of 
mechanisms required to implement a particular pro-
tocol usually must be added to already complex soft-
ware systems on a custom basis.  Developers are sel-
dom willing to implement two protocols for the sake 
of comparison. 

The need to quickly implement and evaluate or 
compare various software process recovery protocols 
was the impetus behind the creation of the Julep dis-
tributed process recovery environment.  Julep is fully 
implemented in Java. Java provides several benefits 
to the Julep system. The multithreading necessary for 
simultaneous message sending and reception is easily 
implemented, simple mechanisms are available for 
shared memory, synchronization and sockets, and a 
standard implementation will work across heteroge-
neous networks. 

Julep allows specific comparisons between proc-
ess recovery protocols in terms of the efficiency of 
the protocols and the amount of system overhead the 
protocols require. The overhead for a particular pro-
tocol can depend, in part, on the physical characteris-
tics of the hardware the application is running on. 
Because Julep is written in Java and runs on any 
hardware with an installed JVM, a protocol’s per-
formance can be analyzed on a particular distributed 



hardware configuration, and the results used to opti-
mize the protocol for that configuration. 

Julep provides two main services to a distributed 
application. First, it provides a reliable object-based 
communication service, supplying each application 
node with a set of message send/receive primitives. 
All system communication passes through, and is 
manipulated by, the Julep layer. The second service 
Julep provides is that of system node management. 
This service dynamically tracks liveness, status, and 
location for every node in the distributed application, 
allowing the system to quickly adapt to node failures 
and changing node locations. At the application level, 
nodes are identified without reference to location, 
allowing Julep to always route messages to a migrat-
ing node’s current location. Julep implements a con-
figurable blocking message send functionality. If a 
node receiving a message fails midway through the 
message reception and restarts on a remote machine, 
the communication channel is dynamically rerouted 
to its new location and the send event will eventually 
successfully complete. This is the basis for Julep’s 
“unbreakable” communication channels.   

These services are combined in Julep to create an 
environment within which process recovery protocols 
can be easily implemented and compared. Most proc-
ess recovery protocols rely on storing and manipulat-
ing system messages in some manner; Julep’s provi-
sion of a message transport service allows it to ma-
nipulate all system communication to satisfy this 
requirement of any process recovery protocol. 

The organization of this paper is as follows: Sec-
tion 2 gives an overview of the Julep system, while 
Sections 3 and 4 describe Julep’s Manager and 
Communication services in more detail. Section 5 
describes two process recovery protocols that have 
been implemented into the Julep system with Section 
6 giving a performance comparison between them. 
Section 7 describes related work, and finally, Section 
8 gives conclusions and future work. 

2. Overview of Julep 

Julep has three main components; a central Man-
ager, JulepEndpoints, and  UDPObjectTransfer com-
ponents. The central Manager component provides a 
system-wide node location lookup service for all 
nodes, the JulepEndpoint component provides a 
communication endpoint, and the UDPObjectTrans-
fer component provides low-level object send/receive 
functionality. Figure 1 shows a modified UML dia-
gram of all the component classes in the Julep sys-
tem. For a complete discussion of all of Julep’s com-
ponents and their functionality, see [11].  

Each communication endpoint must have a sys-
tem wide unique identifier. Distributed applications 
instantiate JulepEndpoint objects, which provide an 
application level interface to the Julep system. The 
unique identifier is supplied to the JulepEndpoint 
constructor. Each JulepEndpoint discovers its current 
location and then registers with the central Manager, 
where its ID and location are bound and made avail-
able for lookup by other nodes in the system.  Upon 
startup, the JulepEndpoint also initiates a HeartBeat-
Sender thread, whose purpose is to periodically send 
“I’m alive” heartbeats to the Manager. This allows 
the Manager to passively track the state of the node. 
The JulepEndpoint object can also actively change its 
state with a terminate( ) method call to the Manager 
at any time, which will remove it from the Julep sys-
tem. 

The primary service provided by a JulepEnd-
point object is reliable send/receive message passing 
primitives. A node uses these primitives for all net-
work communication. When a registered node wants 
to send a message to a peer node, it calls its Jule-
pEndpoint’s high level send() method, passing it the 
ID of the receiver node’s JulepEndpoint and an ob-
ject.  If the JulepEndpoint has previously sent a mes-
sage to the specified destination, it will find the des-
tination’s physical location in its cache. If this is the 
first message sent to a particular destination, the Ju-
lepEndpoint will request the receiver’s location from 
the Manager, and cache the reply.   This caching re-
duces communication overhead and the load on the 
Manager.   

Associated with each JulepEndpoint object is a 
UDPObjectTransfer object. This object takes care of 
all low-level communication tasks for the node. The 
JulepEndpoint object passes a message to be trans-
mitted, along with the receiver’s location, to its UD-
PObjectTransfer object, which handles the details of 
transforming the object to be transferred into a series 
of packets.  For message reception, a communication 
endpoint’s UDPObjectTransfer object runs a daemon 
thread that awaits incoming message packets. When 
it receives all packets that constitute an incoming 
message, it transforms them back into the original 
object, and invokes its DeliverDriver to deliver the 
object to a message queue in the associated Jule-
pEndpoint object.  The DeliverDriver provides a lo-
cation for specific message-logging implementations 
to be incorporated.  The receiver invokes JulepEnd-
point’s receive() primitive to access the message 
from this queue. 

The Manager component is a standalone object. 
Its purpose is to register and track the status of all 
nodes in the system, and act as a server for node loca-
tion requests.     If    an    individual    node    fails,  



Figure1. The core Julep classes.                     
  
the Manager will eventually react to the failure and 
flag the node as DEAD.  Nodes attempting to com-
municate with the failed node will block. Eventually, 
when the failed node re-registers (possibly from a 
new location), the Manager will respond to a location 
request with the (new) location of the destination and 
the sender will unblock.  

3. Julep’s Manager Service 

The central Manager component in Julep pro-
vides a node location lookup service using node 
ID/location binding. The Manager tracks liveness of 
all registered nodes in the system passively through 
periodic heartbeat reception, and actively through 
registration and termination commands. The Manager 
is fault-tolerant: on receiving node update messages 
the Manager logs the changes to stable storage. In the 
event of Manager failure, a restarting Manager will 
access stable storage and restore its state prior to fail-
ure. 

The Manager can have additional system-wide 
services programmed into it. For example, it cur-
rently has the ability to function as a Group Member-
ship Service Provider with a comprehensive set of 
group management commands. The JulepEndpoint 
component provides primitives for group communi-
cation that work in conjunction with the Manager to 
guarantee delivery and guarantee ordering con-
straints.  Also, the JulepEndpoint component can 
invoke the standard send() method with a group ID 
instead of a node ID; this will send a single unicast 
message to the least loaded member node in the 
group.   A visualization system has also been devel-
oped for Julep.  The group communication and visu-
alization facilities of Julep are not discussed further 
in this paper due to space constraints. 

4. Julep’s Communication Service  

Julep is very flexible in the services it can pro-
vide to a distributed application. The fault-tolerant 
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mechanisms included in the system can simply be 
turned off, or used selectively to augment normal 
operation. A prototype utilizing Julep for distributed 
observation of personnel movements is described in 
[12]. In this prototype, GPS location data reflecting 
personnel movements in a field of operations is mul-
ticast to remote viewers, where it appears in context 
through a 3D virtual reality interface. Julep was used 
as the network communication service, and its mes-
sage logging mechanism was enabled at the remote 
viewing stations for purposes of recording rather than 
fault-tolerance. The remote stations can “replay” 
logged events at any future time, for purposes of 
analysis and training. 

For performance reasons, Julep uses the connec-
tionless UDP protocol on top of IP for all message 
passing. The UDP transport service has several 
drawbacks when compared to TCP, another common 
transport service. UDP packet delivery service is un-
reliable, and UDP packets have a fixed maximum 
length. However, it has advantages over TCP in that 
no overhead is required for the establishment of a 
communication channel and no file handles are con-
sumed to support connections. For a node that has 
failed and is restarting, this can be a significant sav-
ings in overhead, especially if the node was commu-
nicating with many peer nodes at the time of its fail-
ure. The low level message transport layer imple-
mented in Julep is essentially a software layer on top 
of UDP that handles fragmenting Java objects into 
packets, and ordering, sending and reassembly of 
these packets at the receiver.  Resends of lost packets 
are automatically handled, and duplication of packets 
or out of order packet reception is handled transpar-
ently at the receiver side. Time limits for packet re-
ception and message reconstruction are configurable, 
so slow hosts or networks can be accommodated.  
This protocol layer in Julep makes the UDP protocol 
reliable and able to process messages of unlimited 
size.  

To send a message to another node, an applica-
tion node will first invoke its JulepEndpoint object’s 
send() method, which in turn, invokes its UDPOb-
jectTransfer object’s send() method. When the UD-
PObjectTransfer send() method is invoked, the mes-
sage object is first transformed into a byte array.  
This byte array is fragmented into a series of UDP 
packet sized fragments, which are loaded, along with 
message ID and fragment sequencing information, 
into a series of UDP packets. The packets are then 
sent over the network to the daemon thread associ-
ated with the receiver node’s UDPObjectTransfer 
object. This daemon thread replies with an ack UDP 
packet for every received packet. The sending side 
overlaps sending (or resending if necessary), of the 
message fragment packets with receipt of the corre-

sponding ack packets. Once the last packet has been 
sent and its corresponding ack packet received, the 
sending side blocks waiting for an object ack packet.  
At this stage, the receiving side sequences the byte 
array fragments, transforms the byte array back into 
the original message object and makes it available for 
reception.  Once initial delivery of the message has 
completed, an object ack packet is sent to finally un-
block the sending process.  

If a configurable timeout limit is reached while 
waiting for acks, control on the sender side passes 
back to the send() method which re-attempts the mes-
sage send. This process is repeated a configurable 
number of times. After the limit on send attempts is 
reached, control returns to the sender’s JulepEndpoint 
object, which clears its cache of the receivers loca-
tion, sends a new location request to the Manager, 
and re-attempts the message send. This is the “un-
breakable” message channel functionality; if the re-
ceiver node fails in mid-reception and restarts on a 
different machine, upon registration with the Man-
ager the sender’s message send operation will dis-
cover the receiver’s new location and complete the 
transmission.  

 5. Currently Implemented Recovery Pro-
tocols 

Recovery protocols generally require process 
checkpointing in some form. Currently, checkpoint-
ing in Julep can be handled by a set of application 
specific fault-tolerant design patterns at the level of 
the distributed application, as described in [17]. 
Many researchers are working on mechanisms to add 
persistence to Java objects at the level of the JVM as 
well. We are investigating the incorporation of such a 
mechanism into Julep, but are currently concerned 
about portability issues.  

The first protocol that has been implemented in 
Julep is the Pessimistic Receiver Based Logging  
(PRBL) Protocol [8]. Under this protocol, the node 
receiving a message is the one responsible for log-
ging it to stable storage before processing it.  This 
protocol requires the Julep system to prevent a mes-
sage sender from unblocking until the receiver has 
successfully stored the message into a message log. If 
a node fails and restarts, it simply recreates its state 
prior to failure by replaying messages from the mes-
sage log on disk. The main advantage of this protocol 
is that node recovery has a smaller system-wide im-
pact, since there is no required rollback or interaction 
with peer nodes: the recovering node recreates its 
state with only local information. The main disadvan-
tage is that pessimistic logging to disk during normal 
operation is a very time consuming task. Worse, the 



logging occurs on the critical path of a node’s proc-
essing; the sender and receiver are blocked until log-
ging is complete.  

The Pessimistic Sender Based Logging (PSBL) 
Protocol [10] has also been implemented in the Julep 
System.  This protocol requires the node sending the 
message to log it to volatile storage before sending it. 
The receiver node transmits back to the sender the 
value of a Received Sequence Number (RSN) 
counter, and increments the counter for the next in-
coming message. In the event of a node failure, upon 
restart the failed node sends “recovery” messages to 
all system nodes. Each node will check its queue of 
sent messages in volatile storage, pulling and resend-
ing any previously sent to the recovering node, along 
with their individual RSN numbers. This allows the 
recovering node to order the incoming messages into 
the original order of reception, to recreate the same 
state it had prior to failure. The main advantage of 
this protocol is that during normal operation message 
logging to volatile storage is very fast. The disadvan-
tages are that only one node at a time may fail, and 
that the recovery protocol for a failed node is more 
complex; a failed node must interact with all nodes 
from which it previously received messages. Thus 
overall system-wide impact of a recovering node is 
greater under this protocol. 

6. Protocol Performance Comparison  

Experimental evaluation of Julep and the various 
recovery protocols we have implemented is a work-
in-progress.  We present some preliminary results in 
this section. 

Protocol comparison is usually specific to a par-
ticular distributed application. The overhead of a pro-
tocol is a combination of the amount of additional 
communication required, the size of the messages, 
and the complexity of the algorithms for both normal 
and recovery operations.  The first two factors can 
vary to a great degree between different applications. 
If a distributed application relies on a pattern of syn-
chronous communication between nodes, the entire 
system could be forced to halt until a failed node 
completes its recovery operation. In order to establish 
as neutral an environment as possible, an application 
was selected in which the failure of a task would not 
affect the speed of processing to a greater extent than 
simply having one less node available for work, but 
where the recovery of the failed node was essential to 
the completion of the overall task.  

The initial test application consisted of two client 
nodes requesting tasks, and one server node dispens-
ing them. The tasks were simulated, with a configur-
able processing “wait” time, to allow comparison 
between processor intensive tasks and network com-

munication intensive tasks. The distributed applica-
tion protocol required each client to send an initial 
“request” message to retrieve a task from the server. 
The server responds with a “task” message contain-
ing the task. The client completes the task, sending a 
“done” message to the server, and receiving an “ack” 
message in response. The client is then free to request 
another task. The task processing “wait” time was 
configured to 50 ms for the following experiment. 

A System Run time represents the span of time 
from the point after the first client “request” message 
reaches the server and the point after the twentieth 
“done” message reaches the server. For the Recovery 
System Run, one client is controlled by a SuperClient 
that starts the client, kills it after it completes four 
tasks (i.e., sends 8 messages and receives 8 mes-
sages), waits 500 milliseconds, then restarts it. Re-
covery for this client would then consist of retrieving 
and processing the eight previously received mes-
sages and then rejoining the active system. All sys-
tem messages were limited to the size of one UDP 
packet.  The single message time shown is the total 
one-way latency for a message transfer. 

The protocol comparison test was performed on 
a set of Sun Ultra 30 workstations with 296 MHz 
processors, connected by a 100Mb/s Ethernet net-
work under lightly loaded conditions. Each applica-
tion task ran on a separate machine, with the Julep 
Manager also running on its own machine. 

Test Results: 

 Normal System runs with no node failures: 
The values presented below were averaged from a 
series of runs:  
    System Run with no logging occurring:    3511 ms. 
    - Avg. time required to send one message:    24 ms. 
    PSBL Protocol:                                          3548 ms. 
    - Avg. time required to send one message:   23  ms. 
    PRBL Protocol:                             7250 ms. 
    - Avg. time required to send one message:  172 ms. 

It is clear that with no node failures, the over-
head for the PSBL protocol is negligible. On the 
other hand, overhead for the implementation of the 
PRBL protocol is large and system message passing 
overhead is significantly higher as well. This is ex-
pected, given the overhead of disk access to perform 
logging. 

System Runs with one node failure and re-
covery:  For node recovery comparisons, the recov-
ery time differential between the two logging proto-
cols consisted of the time each protocol requires to 
retrieve all previously received messages. Once the 
messages are retrieved, the two protocols process 



them in the same manner. In both protocols, the re-
covery of messages occurs on the second instantia-
tion of the node’s JulepEndpoint object, in its con-
structor. This time is listed below each protocol. The 
main protocol time listed is the measured span of 
time between the point after the first client “request” 
message reaches the server and the point after the 
twentieth “done” message reaches the server, with 
one node failing and restarting after completing four 
tasks. This node then contributes to task processing 
after restarting. 
    PSBL Protocol:                5708 ms.  

- time for 2nd instantiation of 
    JulepEndpoint object:                             1930 ms.  

    PRBL Protocol:                7861 ms. 
- time for 2nd instantiation of  
    JulepEndpoint object:                               640 ms. 

For the PRBL Protocol, message retrieval for a 
recovering node consists of reading the previously 
logged messages from disk. The time the PRBL pro-
tocol requires for the second JulepEndpoint instantia-
tion is very close to the time required for the original 
instantiation, once the extra time for initial class load-
ing is accounted for.  The instantiation/message re-
trieval time for the PSBL protocol is significantly 
greater than that of the PRBL protocol, which makes 
sense, given the relative complexity of the PSBL 
recovery/message retrieval algorithm, and the fact 
that the recovering node must block for a synchro-
nous reply to its “recovery” messages sent to the live 
nodes. Not included in the time listed for the PSBL 
Protocol’s second instantiation of JulepEndpoint is 
the time the live nodes in the system must take to 
handle the “recovery” message from the restarting 
node, though it is included as part of the overall 
PSBL system run with a process failure and recovery. 

The total System Run with one node failure and 
recovery for the PRBL protocol represents a 611 ms. 
increase over the total PRBL System Run with no 
node failures, while the same run for the PSBL pro-
tocol shows a 2160 ms. increase. The relatively large 
amount of time required by the PSBL protocol for 
message retrieval by the single recovering node 
would account for most of this time, with the rest 
taken by the required participation of other live nodes 
in the recovery of the failed node. 

In this initial test, the amount of overhead the re-
covery mode of the PSBL protocol requires is greater 
than that of the PRBL protocol, however the normal 
processing differential between the two is so large 
that, for this case, the PSBL protocol still takes less 
time for the overall system run. Increasing the num-
ber of clients would most likely have a drastic effect 

on the differential in recovery times, however. Future 
tests will quantify this. 

A central problem in optimizing the recovery op-
erations of the PSBL protocol lies in minimizing the 
blocking that occurs in live system nodes as they 
process a recovery message from a restarting node. 
For this implementation, the live nodes start a sepa-
rate thread to handle the recovery message, so the 
live node processing is minimally impacted. Julep 
has a node specific “verbose” feature that allows 
close monitoring of the progress and the interactions 
of all individual threads making up a node, as well as 
any interactions of that node with other nodes in the 
distributed application. This feature is a great benefit 
in determining if implemented protocol optimizations 
are performing in their intended manner under spe-
cific recovery scenarios. 

Optimization of Julep’s communication service 
is an immediate goal. After this is accomplished, a 
series of benchmark tests will be performed to deter-
mine the overhead of Juleps communications layer, 
comparing its efficiency to that of TCP. 

7. Related Work  

A research area related to Julep’s focus is the 
construction of simulated environments to analyze 
distributed process recovery protocol performance 
under various fault models. One such project is 
OTEC [14], an object oriented testbed, which utilizes 
the DEPEND [7] system simulation tool with fault 
injection capability. The distributed application to be 
tested with the OTEC system could be a version 
simulated from user specifications, or the actual im-
plemented application. OTEC provides a set of basic 
process recovery components layered on top of DE-
PEND that can be composed in various ways to im-
plement hybrid fault-tolerant protocols. OTEC is 
similar to the Julep system, in this compositional 
approach to protocols. 

A centralized approach to testbed environments 
for implemented real time distributed protocols is 
explored in the Cesium [1] project, which simulates a 
distributed environment by executing all tasks in a 
single address space. The centralization of processing 
allows greater control over execution of tasks, moni-
toring and analysis.  

Another research area closer in design to Julep is 
the insertion of a distributed software layer in an ex-
isting operational environment, with the purpose of 
analyzing a targeted protocol layer. ORCHESTRA 
[4], is a real time distributed protocol testing envi-
ronment with fault injection capabilities for testing of 
real time protocol guarantees. ORCHESTRA oper-
ates as a software layer inserted below a targeted pro-
tocol layer in a distributed system. This approach 



allows ORCHESTRA to manipulate and filter all  
messages passing between the targeted software layer 
on a node and the distributed system at large. Julep is 
designed using a similar layered approach to take 
advantage of message access and manipulation at 
each node. 

Ideally, these simulated and implemented envi-
ronments will allow fault-tolerant characteristics of 
protocols and applications to be efficiently evaluated 
during the prototype or the operational phase. Work-
load generation, fault injection and data analysis 
components in simulated environments will theoreti-
cally provide a laboratory-like experimental setting 
allowing for much greater precision in specific condi-
tion testing than would be possible in an operational 
environment. For example, deterministically repeat-
able simulation of concurrent faults in separate com-
ponents of an application are feasable through envi-
ronment simulation. Such a level of specificity is 
necessary for fault-tolerant protocols for real time 
systems, because by their nature they must offer spe-
cific detailed ironclad guarantees. A testbed envi-
ronment for such protocols must have the ability to 
model specific faults and analyze results for unique 
systemwide scenarios. Test environments and fault 
injectors for such environments often must be plat-
form, or even application specific, because of the 
specificity of protocol guarantees undergoing analy-
sis. Development time for such test environments is 
correspondingly large. Julep was not designed for 
such systems.  Julep was meant for general fault-
tolerant protocol overhead testing in a fail stop envi-
ronment. Initial goals set during Julep’s design were 
that the testbed have maximum portability, run in a 
true operational environment, and that fault-tolerant 
protocols be quickly and easily composed from 
scratch, given the less stringent requirements of non-
real time protocols.  

ReSoFT[19] by SOHAR Inc. is a system aug-
mentation environment for fault-tolerance analysis. It 
provides an object oriented library of basic reusable 
fault-tolerance components defined by object ori-
ented analysis, and implemented in Ada95. Compo-
nents supporting the software fault-tolerance catego-
ries of design diversity and data diversity have been 
implemented.  ReSoFT also provides a set of graphi-
cal tools to give system building, monitoring, and 
fault injection capability. A central goal of ReSoFT is 
to allow users to take existing distributed software 
systems into the environment, add fault-tolerant 
components and evaluate the resulting system.  

Julep, in contrast, is specifically designed to 
study temporal diversity fault-tolerance strategies.  
Julep’s focus is the comparison and evaluation of 
specific fault-tolerant mechanisms and protocols 
within this domain under the  widest range of specific 

hardware platforms possible, enabling protocol 
evaluation for a specific application and platform.  
For this reason Julep is written in Java, and can run 
on a variety of platforms. The analysis capability 
Julep provides is that of protocol overhead analysis, 
rather than fault injection oriented protocol error 
handling analysis. 

In the past decade several testbeds have been 
implemented to evaluate SWFT mechanisms for 
various strategies [2][13]. These testbeds studied 
strategies other than temporal diversity however.  
Some of these testbeds were non-portably imple-
mented, limiting their applicability. 

A more recent object oriented fault-tolerance 
framework was developed in [20].  It was designed to 
be  an off-the-shelf component which can be added to 
an existing system, rather than a testbed for new 
components. The framework is configurable by the 
user to provide a range of fault-tolerance levels. A 
single fault-tolerance strategy is employed in the 
framework; Specialized N-modular redundancy 
(SNMR), a design diversity strategy. The system 
utilizes a base model hierarchically modified for in-
creasingly sophisticated fault-tolerance protocols at 
proportionate system overhead costs.  It can handle 
fail-stop, general and Byzantine failure modes, and 
various system replication models. 

8. Conclusions and Future Work 

In this paper we have described Julep, a Java-
based testbed for implementation and evaluation of 
distributed process recovery protocols.  Julep pro-
vides “unbreakable” communication channels, which 
automatically re-route messages when communica-
tion endpoints fail and recover.  Julep can also be 
used as an infrastructure for developing fault-tolerant 
distributed applications, or for adding fault-tolerance 
to existing Java applications. With no recovery algo-
rithms activated, the Julep system can function 
strictly as a reliable object-based communication 
facility. 

While implementation of representative process 
recovery protocols in Julep is a work-in-progress, we 
have presented some initial results for two simple 
protocols in this paper.  More sophisticated protocols 
[e.g., 15] are under construction. 

We are currently evaluating and optimizing Ju-
lep’s communication protocol in an attempt to reduce 
communication latency.  Julep is also being extended 
to support wireless environments. This work includes 
adding support for location-based groups and chang-
ing the single central manager to a dynamic group [3] 
of managers.  The latter poses some interesting de-
sign decisions, because we must address intra-
manager communication, the expansion and contrac-



tion of the manager group to handle queries and 
heartbeats, and node registration transfer in the case 
of manager failures. 

Source code for Julep is available by request. 
Please contact the authors for more information or 
keep an eye on http://www.cs.uno.edu/~golden. 
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