

Julep: an Environment for the Evaluation of
Distributed Process Recovery Protocols

Lawrence R. Klos Golden G. Richard III
{lklos, golden}@cs.uno.edu

Department of Computer Science
University of New Orleans
New Orleans, LA 70148

Abstract
Julep is an object-oriented testbed designed for

implementation and analysis of process recovery
protocols. It is written in Java, and runs as a layer
underneath a Java-based distributed application.
Only minor modifications to a typical distributed
application are necessary to use Julep as a commu-
nication mechanism. Julep is designed to allow new
process recovery mechanisms to be quickly incorpo-
rated, permitting accurate comparison between
mechanisms for specific distributed applications on
specific hardware platforms. A novel aspect of Julep
is its UDP-based object communication service,
which implements “unbreakable” communication
channels. Julep can be used as a testbed to compare
the performance of particular recovery mechanisms,
as a framework within which new recovery mecha-
nisms can be implemented and tested, or as an infra-
structure to make existing distributed applications
fault tolerant. In its most basic form, Julep can be
used as a reliable object-based communication ser-
vice.

1. Introduction

Software fault-tolerance protocols based on
process recovery have been under development for
over twenty years. Research in this area has matured
to the point where developers are often required to
offer guarantees of reliability for recovery of failed
processes in distributed applications, and rightly so.
With current knowledge, throwing out the interim
processing of a distributed application because a few
processes have failed and must be restarted is simply
wasteful.

Many software mechanisms have been devel-
oped that can be combined in various ways to imple-
ment a wide variety of these protocols. Julep was
designed to study temporal diversity protocols that

rely on a fail-stop node model. Individual mecha-
nisms developed for temporal diversity process re-
covery, such as logical and vector clocks, various
types of message logging and checkpointing, as well
as the process recovery protocols that can be created
from these mechanisms are fully described in [5] and
[6]. Each protocol that has been developed offers its
own set of guarantees regarding the process failure
scenarios it can handle. Each protocol also incurs two
different sets of overhead costs: one for standard op-
eration, and one for operation during the recovery of
a process.

Rigorous analysis and comparison of process re-
covery protocols in terms of their overhead costs in
specific settings is slowed by the fact that the set of
mechanisms required to implement a particular pro-
tocol usually must be added to already complex soft-
ware systems on a custom basis. Developers are sel-
dom willing to implement two protocols for the sake
of comparison.

The need to quickly implement and evaluate or
compare various software process recovery protocols
was the impetus behind the creation of the Julep dis-
tributed process recovery environment. Julep is fully
implemented in Java. Java provides several benefits
to the Julep system. The multithreading necessary for
simultaneous message sending and reception is easily
implemented, simple mechanisms are available for
shared memory, synchronization and sockets, and a
standard implementation will work across heteroge-
neous networks.

Julep allows specific comparisons between proc-
ess recovery protocols in terms of the efficiency of
the protocols and the amount of system overhead the
protocols require. The overhead for a particular pro-
tocol can depend, in part, on the physical characteris-
tics of the hardware the application is running on.
Because Julep is written in Java and runs on any
hardware with an installed JVM, a protocol’s per-
formance can be analyzed on a particular distributed

hardware configuration, and the results used to opti-
mize the protocol for that configuration.

Julep provides two main services to a distributed
application. First, it provides a reliable object-based
communication service, supplying each application
node with a set of message send/receive primitives.
All system communication passes through, and is
manipulated by, the Julep layer. The second service
Julep provides is that of system node management.
This service dynamically tracks liveness, status, and
location for every node in the distributed application,
allowing the system to quickly adapt to node failures
and changing node locations. At the application level,
nodes are identified without reference to location,
allowing Julep to always route messages to a migrat-
ing node’s current location. Julep implements a con-
figurable blocking message send functionality. If a
node receiving a message fails midway through the
message reception and restarts on a remote machine,
the communication channel is dynamically rerouted
to its new location and the send event will eventually
successfully complete. This is the basis for Julep’s
“unbreakable” communication channels.

These services are combined in Julep to create an
environment within which process recovery protocols
can be easily implemented and compared. Most proc-
ess recovery protocols rely on storing and manipulat-
ing system messages in some manner; Julep’s provi-
sion of a message transport service allows it to ma-
nipulate all system communication to satisfy this
requirement of any process recovery protocol.

The organization of this paper is as follows: Sec-
tion 2 gives an overview of the Julep system, while
Sections 3 and 4 describe Julep’s Manager and
Communication services in more detail. Section 5
describes two process recovery protocols that have
been implemented into the Julep system with Section
6 giving a performance comparison between them.
Section 7 describes related work, and finally, Section
8 gives conclusions and future work.

2. Overview of Julep

Julep has three main components; a central Man-
ager, JulepEndpoints, and UDPObjectTransfer com-
ponents. The central Manager component provides a
system-wide node location lookup service for all
nodes, the JulepEndpoint component provides a
communication endpoint, and the UDPObjectTrans-
fer component provides low-level object send/receive
functionality. Figure 1 shows a modified UML dia-
gram of all the component classes in the Julep sys-
tem. For a complete discussion of all of Julep’s com-
ponents and their functionality, see [11].

Each communication endpoint must have a sys-
tem wide unique identifier. Distributed applications
instantiate JulepEndpoint objects, which provide an
application level interface to the Julep system. The
unique identifier is supplied to the JulepEndpoint
constructor. Each JulepEndpoint discovers its current
location and then registers with the central Manager,
where its ID and location are bound and made avail-
able for lookup by other nodes in the system. Upon
startup, the JulepEndpoint also initiates a HeartBeat-
Sender thread, whose purpose is to periodically send
“I’m alive” heartbeats to the Manager. This allows
the Manager to passively track the state of the node.
The JulepEndpoint object can also actively change its
state with a terminate() method call to the Manager
at any time, which will remove it from the Julep sys-
tem.

The primary service provided by a JulepEnd-
point object is reliable send/receive message passing
primitives. A node uses these primitives for all net-
work communication. When a registered node wants
to send a message to a peer node, it calls its Jule-
pEndpoint’s high level send() method, passing it the
ID of the receiver node’s JulepEndpoint and an ob-
ject. If the JulepEndpoint has previously sent a mes-
sage to the specified destination, it will find the des-
tination’s physical location in its cache. If this is the
first message sent to a particular destination, the Ju-
lepEndpoint will request the receiver’s location from
the Manager, and cache the reply. This caching re-
duces communication overhead and the load on the
Manager.

Associated with each JulepEndpoint object is a
UDPObjectTransfer object. This object takes care of
all low-level communication tasks for the node. The
JulepEndpoint object passes a message to be trans-
mitted, along with the receiver’s location, to its UD-
PObjectTransfer object, which handles the details of
transforming the object to be transferred into a series
of packets. For message reception, a communication
endpoint’s UDPObjectTransfer object runs a daemon
thread that awaits incoming message packets. When
it receives all packets that constitute an incoming
message, it transforms them back into the original
object, and invokes its DeliverDriver to deliver the
object to a message queue in the associated Jule-
pEndpoint object. The DeliverDriver provides a lo-
cation for specific message-logging implementations
to be incorporated. The receiver invokes JulepEnd-
point’s receive() primitive to access the message
from this queue.

The Manager component is a standalone object.
Its purpose is to register and track the status of all
nodes in the system, and act as a server for node loca-
tion requests. If an individual node fails,

Figure1. The core Julep classes.

the Manager will eventually react to the failure and
flag the node as DEAD. Nodes attempting to com-
municate with the failed node will block. Eventually,
when the failed node re-registers (possibly from a
new location), the Manager will respond to a location
request with the (new) location of the destination and
the sender will unblock.

3. Julep’s Manager Service

The central Manager component in Julep pro-
vides a node location lookup service using node
ID/location binding. The Manager tracks liveness of
all registered nodes in the system passively through
periodic heartbeat reception, and actively through
registration and termination commands. The Manager
is fault-tolerant: on receiving node update messages
the Manager logs the changes to stable storage. In the
event of Manager failure, a restarting Manager will
access stable storage and restore its state prior to fail-
ure.

The Manager can have additional system-wide
services programmed into it. For example, it cur-
rently has the ability to function as a Group Member-
ship Service Provider with a comprehensive set of
group management commands. The JulepEndpoint
component provides primitives for group communi-
cation that work in conjunction with the Manager to
guarantee delivery and guarantee ordering con-
straints. Also, the JulepEndpoint component can
invoke the standard send() method with a group ID
instead of a node ID; this will send a single unicast
message to the least loaded member node in the
group. A visualization system has also been devel-
oped for Julep. The group communication and visu-
alization facilities of Julep are not discussed further
in this paper due to space constraints.

4. Julep’s Communication Service

Julep is very flexible in the services it can pro-
vide to a distributed application. The fault-tolerant

Dist. App. task

JulepEndpoint

int myId
inetAddr mgrAddr
taskRec mRrec

register ()
whereIs ()
send ()
receive ()

DeliverDriver

object msg

deliver ()

UDPObject
Transfer
Object msg
int objectId

send ()

HeartBeatSender

taskRec myRec

inetAddr mgrAddr

sendHtBeat ()

Distributed
Application layer

Julep -
high level layer

Julep -
high level layer

Julep -
low level layer

Manager

registerTask ()
receiveMsg ()
sendReply ()

HeartBeatReceiver

getAllHtBeats ()

Message

taskRec myRec
objFrag msgFrag
int tag
int type
String msgId

Run ()

receive ()

ObjectFragment

String objectId
int thisFragSeqNbr
byte[] msgFrag
boolean fragAck
boolean objAck

BlockingQueue

Object ack

TaskRecord
int id
String hostname
int port
int status

mechanisms included in the system can simply be
turned off, or used selectively to augment normal
operation. A prototype utilizing Julep for distributed
observation of personnel movements is described in
[12]. In this prototype, GPS location data reflecting
personnel movements in a field of operations is mul-
ticast to remote viewers, where it appears in context
through a 3D virtual reality interface. Julep was used
as the network communication service, and its mes-
sage logging mechanism was enabled at the remote
viewing stations for purposes of recording rather than
fault-tolerance. The remote stations can “replay”
logged events at any future time, for purposes of
analysis and training.

For performance reasons, Julep uses the connec-
tionless UDP protocol on top of IP for all message
passing. The UDP transport service has several
drawbacks when compared to TCP, another common
transport service. UDP packet delivery service is un-
reliable, and UDP packets have a fixed maximum
length. However, it has advantages over TCP in that
no overhead is required for the establishment of a
communication channel and no file handles are con-
sumed to support connections. For a node that has
failed and is restarting, this can be a significant sav-
ings in overhead, especially if the node was commu-
nicating with many peer nodes at the time of its fail-
ure. The low level message transport layer imple-
mented in Julep is essentially a software layer on top
of UDP that handles fragmenting Java objects into
packets, and ordering, sending and reassembly of
these packets at the receiver. Resends of lost packets
are automatically handled, and duplication of packets
or out of order packet reception is handled transpar-
ently at the receiver side. Time limits for packet re-
ception and message reconstruction are configurable,
so slow hosts or networks can be accommodated.
This protocol layer in Julep makes the UDP protocol
reliable and able to process messages of unlimited
size.

To send a message to another node, an applica-
tion node will first invoke its JulepEndpoint object’s
send() method, which in turn, invokes its UDPOb-
jectTransfer object’s send() method. When the UD-
PObjectTransfer send() method is invoked, the mes-
sage object is first transformed into a byte array.
This byte array is fragmented into a series of UDP
packet sized fragments, which are loaded, along with
message ID and fragment sequencing information,
into a series of UDP packets. The packets are then
sent over the network to the daemon thread associ-
ated with the receiver node’s UDPObjectTransfer
object. This daemon thread replies with an ack UDP
packet for every received packet. The sending side
overlaps sending (or resending if necessary), of the
message fragment packets with receipt of the corre-

sponding ack packets. Once the last packet has been
sent and its corresponding ack packet received, the
sending side blocks waiting for an object ack packet.
At this stage, the receiving side sequences the byte
array fragments, transforms the byte array back into
the original message object and makes it available for
reception. Once initial delivery of the message has
completed, an object ack packet is sent to finally un-
block the sending process.

If a configurable timeout limit is reached while
waiting for acks, control on the sender side passes
back to the send() method which re-attempts the mes-
sage send. This process is repeated a configurable
number of times. After the limit on send attempts is
reached, control returns to the sender’s JulepEndpoint
object, which clears its cache of the receivers loca-
tion, sends a new location request to the Manager,
and re-attempts the message send. This is the “un-
breakable” message channel functionality; if the re-
ceiver node fails in mid-reception and restarts on a
different machine, upon registration with the Man-
ager the sender’s message send operation will dis-
cover the receiver’s new location and complete the
transmission.

 5. Currently Implemented Recovery Pro-
tocols

Recovery protocols generally require process
checkpointing in some form. Currently, checkpoint-
ing in Julep can be handled by a set of application
specific fault-tolerant design patterns at the level of
the distributed application, as described in [17].
Many researchers are working on mechanisms to add
persistence to Java objects at the level of the JVM as
well. We are investigating the incorporation of such a
mechanism into Julep, but are currently concerned
about portability issues.

The first protocol that has been implemented in
Julep is the Pessimistic Receiver Based Logging
(PRBL) Protocol [8]. Under this protocol, the node
receiving a message is the one responsible for log-
ging it to stable storage before processing it. This
protocol requires the Julep system to prevent a mes-
sage sender from unblocking until the receiver has
successfully stored the message into a message log. If
a node fails and restarts, it simply recreates its state
prior to failure by replaying messages from the mes-
sage log on disk. The main advantage of this protocol
is that node recovery has a smaller system-wide im-
pact, since there is no required rollback or interaction
with peer nodes: the recovering node recreates its
state with only local information. The main disadvan-
tage is that pessimistic logging to disk during normal
operation is a very time consuming task. Worse, the

logging occurs on the critical path of a node’s proc-
essing; the sender and receiver are blocked until log-
ging is complete.

The Pessimistic Sender Based Logging (PSBL)
Protocol [10] has also been implemented in the Julep
System. This protocol requires the node sending the
message to log it to volatile storage before sending it.
The receiver node transmits back to the sender the
value of a Received Sequence Number (RSN)
counter, and increments the counter for the next in-
coming message. In the event of a node failure, upon
restart the failed node sends “recovery” messages to
all system nodes. Each node will check its queue of
sent messages in volatile storage, pulling and resend-
ing any previously sent to the recovering node, along
with their individual RSN numbers. This allows the
recovering node to order the incoming messages into
the original order of reception, to recreate the same
state it had prior to failure. The main advantage of
this protocol is that during normal operation message
logging to volatile storage is very fast. The disadvan-
tages are that only one node at a time may fail, and
that the recovery protocol for a failed node is more
complex; a failed node must interact with all nodes
from which it previously received messages. Thus
overall system-wide impact of a recovering node is
greater under this protocol.

6. Protocol Performance Comparison

Experimental evaluation of Julep and the various
recovery protocols we have implemented is a work-
in-progress. We present some preliminary results in
this section.

Protocol comparison is usually specific to a par-
ticular distributed application. The overhead of a pro-
tocol is a combination of the amount of additional
communication required, the size of the messages,
and the complexity of the algorithms for both normal
and recovery operations. The first two factors can
vary to a great degree between different applications.
If a distributed application relies on a pattern of syn-
chronous communication between nodes, the entire
system could be forced to halt until a failed node
completes its recovery operation. In order to establish
as neutral an environment as possible, an application
was selected in which the failure of a task would not
affect the speed of processing to a greater extent than
simply having one less node available for work, but
where the recovery of the failed node was essential to
the completion of the overall task.

The initial test application consisted of two client
nodes requesting tasks, and one server node dispens-
ing them. The tasks were simulated, with a configur-
able processing “wait” time, to allow comparison
between processor intensive tasks and network com-

munication intensive tasks. The distributed applica-
tion protocol required each client to send an initial
“request” message to retrieve a task from the server.
The server responds with a “task” message contain-
ing the task. The client completes the task, sending a
“done” message to the server, and receiving an “ack”
message in response. The client is then free to request
another task. The task processing “wait” time was
configured to 50 ms for the following experiment.

A System Run time represents the span of time
from the point after the first client “request” message
reaches the server and the point after the twentieth
“done” message reaches the server. For the Recovery
System Run, one client is controlled by a SuperClient
that starts the client, kills it after it completes four
tasks (i.e., sends 8 messages and receives 8 mes-
sages), waits 500 milliseconds, then restarts it. Re-
covery for this client would then consist of retrieving
and processing the eight previously received mes-
sages and then rejoining the active system. All sys-
tem messages were limited to the size of one UDP
packet. The single message time shown is the total
one-way latency for a message transfer.

The protocol comparison test was performed on
a set of Sun Ultra 30 workstations with 296 MHz
processors, connected by a 100Mb/s Ethernet net-
work under lightly loaded conditions. Each applica-
tion task ran on a separate machine, with the Julep
Manager also running on its own machine.

Test Results:

 Normal System runs with no node failures:
The values presented below were averaged from a
series of runs:
 System Run with no logging occurring: 3511 ms.
 - Avg. time required to send one message: 24 ms.
 PSBL Protocol: 3548 ms.
 - Avg. time required to send one message: 23 ms.
 PRBL Protocol: 7250 ms.
 - Avg. time required to send one message: 172 ms.

It is clear that with no node failures, the over-
head for the PSBL protocol is negligible. On the
other hand, overhead for the implementation of the
PRBL protocol is large and system message passing
overhead is significantly higher as well. This is ex-
pected, given the overhead of disk access to perform
logging.

System Runs with one node failure and re-
covery: For node recovery comparisons, the recov-
ery time differential between the two logging proto-
cols consisted of the time each protocol requires to
retrieve all previously received messages. Once the
messages are retrieved, the two protocols process

them in the same manner. In both protocols, the re-
covery of messages occurs on the second instantia-
tion of the node’s JulepEndpoint object, in its con-
structor. This time is listed below each protocol. The
main protocol time listed is the measured span of
time between the point after the first client “request”
message reaches the server and the point after the
twentieth “done” message reaches the server, with
one node failing and restarting after completing four
tasks. This node then contributes to task processing
after restarting.
 PSBL Protocol: 5708 ms.

- time for 2nd instantiation of
 JulepEndpoint object: 1930 ms.

 PRBL Protocol: 7861 ms.
- time for 2nd instantiation of
 JulepEndpoint object: 640 ms.

For the PRBL Protocol, message retrieval for a
recovering node consists of reading the previously
logged messages from disk. The time the PRBL pro-
tocol requires for the second JulepEndpoint instantia-
tion is very close to the time required for the original
instantiation, once the extra time for initial class load-
ing is accounted for. The instantiation/message re-
trieval time for the PSBL protocol is significantly
greater than that of the PRBL protocol, which makes
sense, given the relative complexity of the PSBL
recovery/message retrieval algorithm, and the fact
that the recovering node must block for a synchro-
nous reply to its “recovery” messages sent to the live
nodes. Not included in the time listed for the PSBL
Protocol’s second instantiation of JulepEndpoint is
the time the live nodes in the system must take to
handle the “recovery” message from the restarting
node, though it is included as part of the overall
PSBL system run with a process failure and recovery.

The total System Run with one node failure and
recovery for the PRBL protocol represents a 611 ms.
increase over the total PRBL System Run with no
node failures, while the same run for the PSBL pro-
tocol shows a 2160 ms. increase. The relatively large
amount of time required by the PSBL protocol for
message retrieval by the single recovering node
would account for most of this time, with the rest
taken by the required participation of other live nodes
in the recovery of the failed node.

In this initial test, the amount of overhead the re-
covery mode of the PSBL protocol requires is greater
than that of the PRBL protocol, however the normal
processing differential between the two is so large
that, for this case, the PSBL protocol still takes less
time for the overall system run. Increasing the num-
ber of clients would most likely have a drastic effect

on the differential in recovery times, however. Future
tests will quantify this.

A central problem in optimizing the recovery op-
erations of the PSBL protocol lies in minimizing the
blocking that occurs in live system nodes as they
process a recovery message from a restarting node.
For this implementation, the live nodes start a sepa-
rate thread to handle the recovery message, so the
live node processing is minimally impacted. Julep
has a node specific “verbose” feature that allows
close monitoring of the progress and the interactions
of all individual threads making up a node, as well as
any interactions of that node with other nodes in the
distributed application. This feature is a great benefit
in determining if implemented protocol optimizations
are performing in their intended manner under spe-
cific recovery scenarios.

Optimization of Julep’s communication service
is an immediate goal. After this is accomplished, a
series of benchmark tests will be performed to deter-
mine the overhead of Juleps communications layer,
comparing its efficiency to that of TCP.

7. Related Work

A research area related to Julep’s focus is the
construction of simulated environments to analyze
distributed process recovery protocol performance
under various fault models. One such project is
OTEC [14], an object oriented testbed, which utilizes
the DEPEND [7] system simulation tool with fault
injection capability. The distributed application to be
tested with the OTEC system could be a version
simulated from user specifications, or the actual im-
plemented application. OTEC provides a set of basic
process recovery components layered on top of DE-
PEND that can be composed in various ways to im-
plement hybrid fault-tolerant protocols. OTEC is
similar to the Julep system, in this compositional
approach to protocols.

A centralized approach to testbed environments
for implemented real time distributed protocols is
explored in the Cesium [1] project, which simulates a
distributed environment by executing all tasks in a
single address space. The centralization of processing
allows greater control over execution of tasks, moni-
toring and analysis.

Another research area closer in design to Julep is
the insertion of a distributed software layer in an ex-
isting operational environment, with the purpose of
analyzing a targeted protocol layer. ORCHESTRA
[4], is a real time distributed protocol testing envi-
ronment with fault injection capabilities for testing of
real time protocol guarantees. ORCHESTRA oper-
ates as a software layer inserted below a targeted pro-
tocol layer in a distributed system. This approach

allows ORCHESTRA to manipulate and filter all
messages passing between the targeted software layer
on a node and the distributed system at large. Julep is
designed using a similar layered approach to take
advantage of message access and manipulation at
each node.

Ideally, these simulated and implemented envi-
ronments will allow fault-tolerant characteristics of
protocols and applications to be efficiently evaluated
during the prototype or the operational phase. Work-
load generation, fault injection and data analysis
components in simulated environments will theoreti-
cally provide a laboratory-like experimental setting
allowing for much greater precision in specific condi-
tion testing than would be possible in an operational
environment. For example, deterministically repeat-
able simulation of concurrent faults in separate com-
ponents of an application are feasable through envi-
ronment simulation. Such a level of specificity is
necessary for fault-tolerant protocols for real time
systems, because by their nature they must offer spe-
cific detailed ironclad guarantees. A testbed envi-
ronment for such protocols must have the ability to
model specific faults and analyze results for unique
systemwide scenarios. Test environments and fault
injectors for such environments often must be plat-
form, or even application specific, because of the
specificity of protocol guarantees undergoing analy-
sis. Development time for such test environments is
correspondingly large. Julep was not designed for
such systems. Julep was meant for general fault-
tolerant protocol overhead testing in a fail stop envi-
ronment. Initial goals set during Julep’s design were
that the testbed have maximum portability, run in a
true operational environment, and that fault-tolerant
protocols be quickly and easily composed from
scratch, given the less stringent requirements of non-
real time protocols.

ReSoFT[19] by SOHAR Inc. is a system aug-
mentation environment for fault-tolerance analysis. It
provides an object oriented library of basic reusable
fault-tolerance components defined by object ori-
ented analysis, and implemented in Ada95. Compo-
nents supporting the software fault-tolerance catego-
ries of design diversity and data diversity have been
implemented. ReSoFT also provides a set of graphi-
cal tools to give system building, monitoring, and
fault injection capability. A central goal of ReSoFT is
to allow users to take existing distributed software
systems into the environment, add fault-tolerant
components and evaluate the resulting system.

Julep, in contrast, is specifically designed to
study temporal diversity fault-tolerance strategies.
Julep’s focus is the comparison and evaluation of
specific fault-tolerant mechanisms and protocols
within this domain under the widest range of specific

hardware platforms possible, enabling protocol
evaluation for a specific application and platform.
For this reason Julep is written in Java, and can run
on a variety of platforms. The analysis capability
Julep provides is that of protocol overhead analysis,
rather than fault injection oriented protocol error
handling analysis.

In the past decade several testbeds have been
implemented to evaluate SWFT mechanisms for
various strategies [2][13]. These testbeds studied
strategies other than temporal diversity however.
Some of these testbeds were non-portably imple-
mented, limiting their applicability.

A more recent object oriented fault-tolerance
framework was developed in [20]. It was designed to
be an off-the-shelf component which can be added to
an existing system, rather than a testbed for new
components. The framework is configurable by the
user to provide a range of fault-tolerance levels. A
single fault-tolerance strategy is employed in the
framework; Specialized N-modular redundancy
(SNMR), a design diversity strategy. The system
utilizes a base model hierarchically modified for in-
creasingly sophisticated fault-tolerance protocols at
proportionate system overhead costs. It can handle
fail-stop, general and Byzantine failure modes, and
various system replication models.

8. Conclusions and Future Work

In this paper we have described Julep, a Java-
based testbed for implementation and evaluation of
distributed process recovery protocols. Julep pro-
vides “unbreakable” communication channels, which
automatically re-route messages when communica-
tion endpoints fail and recover. Julep can also be
used as an infrastructure for developing fault-tolerant
distributed applications, or for adding fault-tolerance
to existing Java applications. With no recovery algo-
rithms activated, the Julep system can function
strictly as a reliable object-based communication
facility.

While implementation of representative process
recovery protocols in Julep is a work-in-progress, we
have presented some initial results for two simple
protocols in this paper. More sophisticated protocols
[e.g., 15] are under construction.

We are currently evaluating and optimizing Ju-
lep’s communication protocol in an attempt to reduce
communication latency. Julep is also being extended
to support wireless environments. This work includes
adding support for location-based groups and chang-
ing the single central manager to a dynamic group [3]
of managers. The latter poses some interesting de-
sign decisions, because we must address intra-
manager communication, the expansion and contrac-

tion of the manager group to handle queries and
heartbeats, and node registration transfer in the case
of manager failures.

Source code for Julep is available by request.
Please contact the authors for more information or
keep an eye on http://www.cs.uno.edu/~golden.

References
[1] G. Alvarez and F. Cristian, Centralized Failure Injection
for Distributed, Fault-tolerant Protocol Testing. In Proc. of
the 17th IEEE International Conference on Distributed
Computing Systems (ICDCS '97), Baltimore, Maryland,
May 1997.
[2] A. Avizienis et al., The UCLA DEDIX System: a Dis-
tributed Testbed for Multiple-Version Software. In 15th
International Symposium on Fault-Tolerant Computing
(FTCS 15) , pages 126-134, June, 1985.
[3]Kenneth P. Birman, Building Secure and Reliable Net-
work Applications. Manning Publications Co., 1996.
[4] S. Dawson, F. Jahanian, and T. Mitton, ORCHESTRA:
A Fault Injection Environment for Distributed Systems.
University of Michigan Technical Report CSE-TR-318-96,
EECS Department.
[5] G. Deconinck, J. Vounckx, R. Cuyvers and R. Lau-
wereins. Survey of Checkpointing and Rollback Tech-
niques. Technical Report O.3.1.8 and O.3.1.12, ESAT-
ACCA Laboratory, Katholieke Universiteit Leuven, Bel-
gium, June 1993.
[6] E. N. Elnozahy, D. B. Johnson and Y. M. Wang. A
Survey of Rollback-Recovery Protocols in Message Pass-
ing Systems. Technical Report CMU-CS-96-181, Depart-
ment of Computer Science, Carnegie Mellon University,
1996.
[7] K. K. Goswami, R. K. Iyer and L. Young, DEPEND: A
Simulation-Based Environment for System Level Depend-
ability Analysis. In IEEE Transactions on Computers, Vol.
46, no. 1, pages 60-74, January, 1997.
[8] Y. Huang, and C. Kintala, A Software Fault-tolerance
Platform. In Practical Reusable Software, Ed. B. Krishna-
murthy, pages 223-245. John Wiley & Sons, 1995.
[9] P. Jalote. Fault-tolerance in Distributed Systems. Pren-
tice Hall, 1994.
[10] D.B. Johnson and W. Zwaenepoel. Sender-based mes-
sage logging. In Proc. IEEE Fault-Tolerant Computing
Symp., pages 14-19, 1987.

[11] L. Klos, G. G. Richard III, Z. Xu, Julep: A Framework
for Reliable Distributed Computing in Java. University of
New Orleans Technical Report UNOCS-TR99-01.
[12] R. Ladner, M. Abdelguerfi, G. G. Richard, III, L. Klos,
B. Liu, K. Shaw, A Distributed Virtual Reality Prototype
for Real Time GPS Data. Accepted to Second International
Symposium on TeleGeoProcessing, Nice, France, May,
2000.
[13] J. M. Purtilo and P. Jalote, An Environment for De-
veloping Fault-Tolerant Software. In IEEE Transactions on
Software Engineering, Vol. 17, No. 2, pages 153-159, Feb-
ruary, 1991.
[14] B. Ramamurthy, S. J. Upadhyaya, and R. K. Iyer, An
Object-Oriented Testbed for the Evaluation of Checkpoint-
ing and Recovery Systems. In 27th International Sympo-
sium on Fault-Tolerant Computing (FTCS 27), pages 194-
203, June, 1997.
[15] G. G. Richard III and M. Singhal, Complete Process
Recovery: Using Vector Time to Handle Multiple Failures
in Distributed Systems. In IEEE Concurrency – Parallel,
Distributed & Mobile Computing, pages 50-59, April-June
1997.
[16] G. G. Richard III, Efficient Vector Time with Dy-
namic Process Creation and Termination. In Journal of
Parallel and Distributed Computing, v55, no. 1, pages 109-
120, Nov. 1998.
[17] G. G. Richard III and S. Tu. On Patterns for Practical
Fault-tolerant Software in Java. In 17th IEEE Symposium
on Reliable Distributed Systems, West Lafayette, Indiana
October 20-23, 1998.
[18] J. Rumbaugh, I. Jacobson and G. Booch, The Unified
Modeling Language Reference Manual, Addison-Wesley,
1998.
[19] K. S. Tso and E. H. Shokri, ReSoFT: a Reusable Soft-
ware Fault-tolerance Testbed. In Pacific Rim International
Symposium of Fault-Tolerant Systems, Newport Beach,
CA, pages 98-103, December, 1995.
[20] I-L. Yen, I. Ahmed, R. Jagannath, and S. Kundu, Im-
plementation of a Customizable Fault-Tolerance Frame-
work. In The First IEEE International Symposium on Ob-
ject-Oriented Real-Time Distributed Computing, Kyoto,
Japan, April, 1998.

http://www.cs.uno.edu/~golden

	Introduction
	2. Overview of Julep
	3. Julep’s Manager Service
	4. Julep’s Communication Service
	5. Currently Implemented Recovery Protocols
	6. Protocol Performance Comparison
	Test Results:
	7. Related Work
	8. Conclusions and Future Work

