
Adaptive Header Compression for Wireless Networks
�

Changli Jiao Loren Schwiebert Golden Richard
Dept. of Elec. and Computer Eng. Dept. of Computer Science Dept. of Computer Science

Wayne State University Wayne State University University of New Orleans
Detroit, MI 48202 Detroit, MI 48202 New Orleans, LA 70148

Email: aa0796@wayne.edu Email: loren@cs.wayne.edu Email: golden@cs.uno.edu

Abstract
TCP/IP header compression has long been used to send

information efficiently and to improve the response time of
communication systems. It is also well known that errors
on the link where header compression is used can dete-
riorate the performance. In addition, the recently noticed
high frequency of some computer networking problems can
make the performance of header compression even worse.
These problems include packet reordering and packet er-
rors that avoid link layer error detection. In this paper, we
analyze the influence of these problems on existing header
compression algorithms. We also propose an adaptive
header compression that gives better performance.

1 Previous Work
Van Jacobson proposed a TCP/IP header compression

algorithm [5] for low-speed links. TCP/IP packets with
compressed headers normally traverse a single link, with a
compressor on one side and a decompressor on the other.
The idea is to avoid transferring redundant information
whenever possible. The decompressor should use infor-
mation already known to recover the headers. The TCP/IP
header fields can be divided into several groups. Constant
fields, which usually do not change during the lifetime of
a connection, can be eliminated from most packets. In-
stead, a unique value, the Compression Identifier (CID), is
assigned and added to the packet header to identify these
fields. Inferable fields can be inferred from other fields
and need not be transferred. Delta fields are expected to
change only slightly from the previous packet. These fields
are transferred using only the differences, which can be ex-
pressed with fewer bits and are referred to as ”delta” val-
ues. Random fields are transferred without change.

Correctly decompressed packets refresh the information
on the decompressor side, based on which following pack-
ets can be recovered. A corrupted packet is dropped and
makes the decompressor desynchronized. Thus, subse-
quent packets received by the decompressor may also be
dropped even though they are transmitted correctly, which
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is called error propagation. When the packet error rate is
high, e.g., over a wireless channel, this might also result in
senders not receiving ACKs, which is assumed as network
congestion and which deteriorates TCP performance [2].
In order to solve this problem, the ”twice” algorithm [2]
was designed to repair the desynchronization. When a
packet cannot be decompressed correctly, it is assumed that
one or more previous packets, which carry the same delta
values, are lost. The decompressor will apply these values
two or more times. If the result can pass the TCP check-
sum, the packet is considered as correctly decompressed.
The twice algorithm improves the performance of header
compression in certain circumstances.

Window based LSB [3] is an encoding method for delta
values. If the compressor can ensure that the decompres-
sor has received a group of packets, it can then transfer
the delta values as the differences from that of the group,
which are expected to occupy fewer bits. TCP Aware RO-
bust Header Compression (TAROC) [4] uses the sliding
window of the TCP sender to decide which packets have
already been received. A new packet cannot be transferred
without getting all the acknowledgments for the previous
window. Hence, the compressor tracks the size of the slid-
ing window according to the arriving sequence of packets.

2 New Challenges
Packet reordering, due to packets of one connection fol-

lowing different paths, may seem uncommon. Bennett et
al. showed that reordering is not necessarily a rare occur-
rence in the Internet [1]. Even when a consistent path is
chosen, the existence of multiple paths between routing
neighbors, or within the data path of a single router, can
cause packet reordering. Some header compression algo-
rithms are thus challenged since they assume that the pack-
ets arrive in order or with minor reordering.

Cyclic Redundancy Check (CRC) is very powerful in
error detection and is the usual error detection method
used in the link layer. TCP/UDP checksum was thus ar-
gued as unnecessary. But both experiment and tracing
analysis have shown that there are a wide variety of error
sources which cannot be detected by link-level CRCs [8].



In TCP/UDP, these errors can be detected only by Internet
checksum [6] [7]. The error detection performance should
be analyzed for header compression algorithms.

3 Header Compression Performance
Both VJ and twice compression algorithm prohibit neg-

ative delta values, since these packets could be sent due
to the desynchronization. Full headers are sent to re-
fresh the decompressor, but packet reordering also triggers
this. This introduces errors on estimating compression ef-
ficiency, which increases with more reordering. The error
on the estimate also increases with the compression ratio.

A packet error means that packets cannot be decom-
pressed, which includes physically corrupted ones as well
as uncorrupted packets influenced by error propagation.
Assume every bit has the same probability to be corrupted
and any error will be detected by the error detection mech-
anism. Also assume all original packet lengths are

�����
bytes, compressed are � ��� bytes. In order to get Figure 1,
we also make a random selection on when a full header
packet will be sent by the compressor. For the VJ algo-
rithm, packet error probability increases almost linearly
until a full header packet is received. If packets are of the
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Figure 1: Packet error prob. comparison, �
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same size and there is no reordering/loss before the com-
pressor, the twice algorithm always recovers the loss on
the link between the compressor and decompressor. But,
even for applications with same length packets, reordering
makes delta values irregular, which causes the twice al-
gorithm to not perform well. When applying delta values
multiple times can not decompress the packet, the error
probability increases almost linearly just as in VJ header
compression. If the algorithm can decompress a subse-
quent packet, the error probability will become low again.
Otherwise, the probability can drop only when a packet
with a full header is received by the decompressor. The-
oretically, TAROC will work perfectly if the compressor
knows when the sender changes the window size, which
is not an easy task. TAROC uses the packet arrival se-
quence as the window size indication. If packet reordering
is assumed as an indication of packet loss, the compressor
believes that the sender will adopt a smaller window size.
Then the decompressor will be assumed to have received
correctly the packets in a smaller previous window. This

will potentially make the decompressor work incorrectly.
We define error masking probability as the probability

that errors passing link layer CRC are not detected by the
TCP checksum and thus passed to a higher layer. Error
masking probability of VJ header compression needs fur-
ther consideration. But it is clear that the error masking
probability of the twice algorithm is higher than that of
VJ compression. If the delta values are applied once and
the TCP checksum is not correct, the actual reason may
be some errors in the data payload or other bytes in the
header of the packet. The more times the delta value is
applied or the more educated guesses for the acknowledg-
ment stream [2], the more likely that an error can be passed
to the layer above TCP.

4 Adaptive Header Compression
We propose an adaptive header compression algorithm.

Define a semi-compressed packet as one with all header
fields compressed except delta fields. Define two variables,
windowSize and distance. The delta fields are coded us-
ing Window based LSB based on the previous windowSize
packets. After every distance compressed packets, a semi-
compressed packets is sent. The value of windowSize and
distance are determined by the average BER of the link and
the average packet size. The higher the BER, the bigger
the windowSize and the smaller the distance. Conversely,
the lower the BER, the smaller the windowSize and the
bigger the distance. By changing these two variables, we
can make the packet error probability less than that with-
out header compression. In this way, the channel usage
and TCP performance can be improved. A wireless chan-
nel is usually modeled as in good and bad states follow-
ing a Markov chain. If we can get some indications as the
wireless channel is in bad state, a semi-compressed packet
should be sent immediately after this to refresh the decom-
pressor, which also lowers the packet error probability.
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