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Abstract

TCP/IP header compression has long been used to send information efficiently and to improve the response
time of communication systems. The wide deployment of the new Internet Protocol, IPv6, puts more de-
mands on header compression, since IPv6 normally yields packets with much larger headers than IPv4 does.
At the same time, header compression is necessary on wireless links, which are always considered relatively
limited resources. However, packets sent over wireless channels are prone to be corrupted. This usually
deteriorates the performance of header compression. In addition, the recently noticed high frequency of
some computer networking problems makes the performance of header compression even worse. These
problems include packet reordering and packet errors that avoid link layer error detection. In this paper,
we analyze the influence of these problems on existing header compression algorithms. We also propose
a new algorithm, which is adaptive to the wireless channel as well as the packet size. This new algorithm
will thus achieve a better tradeoff between compression ratio and error propagation, which will give better
overall performance. Even though we focus on wireless links in this paper, the adaptive algorithm would
also be suitable for wired links where header compression performance is influenced by packet reordering
and errors passing link layer detection.



1 Introduction

Header compression has long been an important issue in the TCP/IP protocol suite. After compression,
most packets are expected to contain shorter headers to be transferred over the communication medium.
In this way, compressed packets can usually reach the destination after a shorter period of time compared
to communication without compression. From the standpoint of the communication medium, the channel
usage will be improved, which means more packets can be carried during a given period of time.

TCP/IP packets with compressed headers normally traverse only a single link. Because the router needs
the whole header to perform routing, making the router understand the compressed header would involve
too much change or may not even be feasible. So there is a compressor on one side of the communication
channel and on the other side, a decompressor. However, the compression and decompression process could
introduce errors. Usually, headers are compressed based on some information known by the decompres-
sor. Correctly decompressed packets refresh the information on the decompressor side, which allows the
following packets to be recovered. A corrupted packet obviously can not be decompressed and has to be
dropped. And this packet’s failure to be decompressed could cause the decompressor to become desynchro-
nized. Thus, subsequent packets received by the decompressor may also be dropped even though they are
transmitted correctly. This is called error propagation, which means the packet dropping is caused by errors
in previous packets instead of this packet itself. Continuously discarding packets on the forward path, due
to error propagation, results in ACKs not being sent. Similarly, error propagation on the reverse path will
prevent the TCP sender from receiving the ACKs. In the TCP sender, ACKs are used to indicate network
conditions. The sender will even transmit packets at a lower speed if the gap between ACKs is too big. This
will have two side results. First, the efficiency of compression is lower, or perhaps even more bits need to be
sent compared to transmitting without compression. Second, the correct information is received later, maybe
even later than transmission without compression. This could be harmful to real time or delay-sensitive ap-
plications. In some real time situations, applications can still use the damaged information, in which case the
tradeoff between delay and having to use erroneous information needs full consideration. These are the bad
influences when the decompressor has to drop packets. If, for some reason, the decompressor can not detect
that a packet was corrupted, worse results emerge. Wrong information will be passed to higher layers. Even
though there may exist other error detection mechanisms on higher protocol layers, the correctness should
be questioned, since it is applied on an error base.

There are a number of proposals for TCP/IP header compression [7] [3] [5] [6]. At the same time, recent
research shows that packet reordering is a common phenomenon in modern computer networks [1], and that
there are various sources of errors that are passed to the transport layer [11]. In this paper, we will analyze
the performance of header compression proposals under these two phenomenon. We will also present a
new algorithm for header compression over wireless networks, which achieves a good tradeoff between
throughput and compression ratio.

2 Previous Work

In the early stage of computer networking, most of the popular mediums for connecting home PCs to the
Internet were low speed serial links. One example is the modem, which could support 300 to 19,200 bps.
At that time, people wanted to conserve the bandwidth of this kind of link, and be able to connect with
the Internet faster. So, in 1990, Van Jacobson proposed a TCP/IP header compression algorithm for low-
speed links [7]. This algorithm was designed for TCP running over IPv4. Jacobson carefully analyzed how
the TCP/IP headers change for each packet throughout a connection. By using the changing pattern, the
algorithm can compress the usual header size of 40 bytes down to 4-17 bytes. VJ compression is a proposed
standard in IETF, and it has been deployed very widely.
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Even today, the bandwidth provided by modems is still quite limited, less than 100Kbps. At the same
time, the communication mediums used in computer networks have changed much. Wireless is becoming
a popular way for connecting computers to the Internet. The bandwidth of wireless links varies over a
wide range. Wide-area networks, due to constraints of the physical medium, can only provide low-speed
bandwidth, on the order of 10Kbps. Some emerging new protocols will support higher data transmission
over conventional voice channels [10], on the order of 100Kbps or several Mbps. The other kind of network,
local-area wireless networks, operates on a smaller geographical area, which in turn faces a better physical
environment. It can operate at a few Mbps, which is also expected to be improved. But, due to the regulatory
limitations on the use of radio frequencies and inherent information carrying limits, all wireless links will
remain scarce resources even after these new protocols are fully deployed. Again, people need to conserve
the bandwidth and to use the link more effectively. Besides the change of network mediums, Internet
protocols also face changes. The first one is that the Internet Protocol, IPv4, will finally be replaced by a
new protocol, IPv6 [4]. In IPv6, the address size will be increased from 4 bytes to 16 bytes. In addition, some
fields of IPv4 are removed from the basic IPv6 header in order to speed the packet processing on routers. So
the basic IPv6 header is 40 bytes, while the minimum IPv4 header is 20 bytes. Moreover, various extension
headers can be added to the basic IPv6 header to provide various routing, security, and other features. The
larger header will definitely add more challenges on wireless links. The second one is particular to mobile
users. The need for wireless data communication arises partially because of the need of mobile computing
and partially for some specialized applications. Under some cases for mobile computing, it is required that
one IP header be encapsulated in another one, or a routing header is added to an IPv6 header. Even though
mobility provides convenient access to the Internet and has become an important use of wireless networks,
fulfilling this task requires more bandwidth, which puts more pressure on wireless networking resources.

In 1996, Degermark et al. proposed a header compression algorithm for UDP and TCP for IPv6 net-
works [2]. The header compression for TCP is quite similar to VJ compression. The basic idea of compres-
sion is not transferring redundant information whenever possible. Thus, the number of bits in a compressed
header will become less. The TCP/IP header fields can be divided into the following groups:

� Constant fields. These fields usually do not change during the lifetime of a connection, for example,
source address, source port, destination address, and destination port.

� Inferable fields. These fields can be inferred from other fields, like the size of the frame.

� Delta fields. These fields are expected to change only slightly from the fields of the previous packet.

� Random fields. These fields have no relationship with other packets, like the checksum in TCP header.

Constant fields can be eliminated from most packets. Instead, a unique number, the Compression Iden-
tifier (CID), is assigned and added to the packet header to identify these fields. Inferable fields will not be
transferred at all. The decompressor will calculate and fill them in. Delta fields will be transferred using
only the differences, which can be expressed with fewer bits and are referred to as ”delta” values. No change
will be made to random fields, since there is no way to predict or calculate them. Thus, several new kinds
of packet types are defined under header compression. The packet types defined in [7] [3] [5] [6] are quite
similar. The compression method uses the following packet types in addition to the IPv4 and IPv6 packet
types:

� UNCOMPRESSED TCP - the packet with a full TCP/IP header as well as the CID.

� COMPRESSED TCP - the packet with all fields compressed and the CID added.

� SEMICOMPRESSED TCP - the packet with all fields compressed except delta fields and with the
CID added.
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The decompressor records or revises fields when receiving UNCOMPRESSED TCP packets. For other
types of packets, the CID will be used to recover the constant fields. In the case of SEMICOMPRESSED TCP
packets, delta fields will be recorded. For COMPRESSED TCP, delta fields will be calculated and recorded.

In [2], one more mechanism is designed to repair the de-synchronization between the compressor and
the decompressor, which we will refer to as the ”twice” algorithm. When a packet cannot be decompressed
correctly, the decompressor will assume the reason is that one or more previous packets are lost. The decom-
pressor also assumes that all the packets carry the same delta values and then tries to decompress the packets
using these values two or more times. The twice algorithm improves the performance of header compression
in certain circumstances. This algorithm has been developed as a proposed standard in IETF [3].

Usually, wireless links are prone to experience significant error rates and large delay times, which puts
more difficulties on header compression. The Robust Header Compression (rohc) working group was cre-
ated in IETF to improve header compression performance under this situation. In [5], some mechanisms are
summarized for robust header compression over links with significant error rates and long round-trip times.
One of the encoding methods, window based LSB, is improved and presented as TCP Aware RObust Header
Compression (TAROC) in [6]. Window based LSB [5] is an encoding method for delta values. If the com-
pressor can make sure that the decompressor has received a group of packets, it can then transfer the delta
values as the differences from that of the group, which are still expected to occupy fewer bits. TAROC uses
a feature of TCP congestion control to decide which packets have already been received. The TCP sender
keeps a sliding window. A new packet cannot be transferred without getting all the acknowledgments for the
previous window. So the compressor tries to track the size of the sliding window according to the arriving
sequence of packets. It will then know which the packets have been received by the decompressor and use
window based LSB accordingly.

3 New Challenges

A high frequency of some problems for computer networking was shown recently through tracing network
connections [1] [11]. Header compression should be studied under the existence of these problems, since
these problems could be encountered by users under typical operating conditions.

3.1 Packet Reordering

Packet reordering is not a new problem in computer networking. Unlike circuit-switching networks, where
all the signals of one connection go through and wholly occupy a predefined route, the information may
go through different routes in computer communication. In computer networks, the information that needs
to be transferred between two ends is usually packaged into multiple packets. Each packet carries the
address of the destination and enters the network. The routers will then try to deliver the packet according
to the address as well as the current availability of network resources. So, packets of one connection are
not guaranteed to all use the same route, which makes the sequence of arrival at the destination unknown.
The usual belief is that when some network components are not working correctly, or there are changes
to the network configuration, routers will transfer packets through different paths, which will cause packet
reordering at the destination. This reasoning leads to the conclusion that the frequency and magnitude of the
phenomenon are not severe.

Recently, Bennett et al. showed that reordering is not necessarily a rare occurrence in the Internet [1].
Even when a consistent path is chosen between a source and destination, the existence of multiple or redun-
dant paths between routing neighbors, or within the data path of a single router, can cause packet reordering.
In order to handle high speed networking, more and more multiple paths are being used between routing
neighbors to form a logic link. At the same time, routers are also implementing more and more parallelism
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internally, which includes parallel data processing paths and parallel decision making for packet forwarding.
When packets belonging to one connection are coming in rapidly or the router’s load is high, the packets
can take any path through the routers and then reordering is unavoidable. Packet reordering is the natural
result of the logic link as well as the router parallelism. Making changes to maintain the packet sequence
within each connection might decrease the packet exchange speed. And keeping a high routing speed while
eliminating packet reordering becomes quite expensive or even very difficult theoretically.

This non-pathological cause of reordering makes it more prevalent than previously believed. Reordering
caused by the selection of different routes for packets associated with a particular connection may not be
severe enough to cause significant problems in header compression. However, frequent and distant packet
reordering caused within one route challenges header compression algorithms. One could argue that non-
pathological packet reordering is not severe if the data transmission is really slow for a connection. This
could be true under certain situations. But, as long as the bandwidth-delay product is large, the sliding
window size of the TCP sender is large. It is possible that the sender has many packets to send and it can
send as many as the window size out quite rapidly if the link connecting to the sender is not slow. Then
these packets do have a high probability to be reordered. Some header compression algorithms assume and
use the feature that the packets arrive with the same order as sent by the sender or with minor reordering.
These algorithms need to be evaluated carefully considering more frequent packet reordering.

3.2 Errors passing CRC

When TCP/IP datagrams are passed over Ethernet, the link layer uses Cyclic Redundancy Check (CRC) to
detect errors. PPP also uses CRC. In most wireless data networks, CRC is also the way to detect errors at
the link layer. It has long been known that CRCs are very powerful for error detection. CRCs are based on
polynomial arithmetic, base 2. CRC-32 is the most commonly used CRC in the TCP/IP suite. CRC-32 can
detect all bursty errors with length less than 32 bits and all 2-bit errors less than 2048 bits apart. For all other
types of errors, the chance of not detecting is just 1 in

�����
. Given this point, one can argue that the TCP or

UDP checksum is not necessary. Practically, this was tried in the 1980s [11]. For some Network File Server
(NFS) implementations, UDP checksum was disabled based on this argument. But this idea resulted in file
corruption and ultimately was discarded as a bad idea.

Recently, Stone and Patridge have shown that for the Internet today, there are a wide variety of error
sources which cannot be detected by link-level CRCs [11]. Defective hardware, buggy software, and prob-
lems in both end-systems and routers can all cause errors that will pass link-level error detection. Newly
emerging software and hardware are especially vulnerable to these problems. In essence, any errors intro-
duced at protocol layers above the link layer will not be detected by the link-layer CRC. Changes should
be made to eliminate these error sources. But, before old error sources are cleaned up, or after new sources
are introduced, the best solution is to detect these errors. In TCP, this task can be done only by Internet
checksum [8] [9]. When errors pass the checksum, these errors will be passed to higher layers, including
the application layer. The performance of header compression algorithms needs reconsideration under these
errors.

4 Performance of Header Compression Algorithms Under New Challenges

For each header compression algorithm we can analyze the probability that the packets can not be decom-
pressed, including corrupted packets and packets influenced by error propagation. Assume every bit has
the same probability to be corrupted and every bit error will be detected by the error detection mechanism,
either by the link layer or by the transport layer. Also, assume all the packets are of the same length. Then
all the packets with the original header will have the same error probability, define it to be ��� . And all the
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packets with the compressed header will have the same error probability and define it to be ��� . Since the
compressed header is shorter than the original header, ��� � � � . We will make the analysis using the length
of an UNCOMPRESSED TCP packet as ��� � bytes and the length of a COMPRESSED TCP packet as ���	�
bytes. The analysis for existing header compression algorithms is described as follows.

4.1 VJ compression

The problem with VJ header compression basically comes from the packet error or loss caused by error prop-
agation. Since TCP uses the ACKs from the receiver as the congestion indication, the packet error or loss
has more influence on TCP performance than just the erroneous/lost packet itself. This issue was discussed
clearly in [2]. We give the packet error probability for VJ header compression in Figure 1, when the bit error
rate (BER) is ��
���
 . A corrupted COMPRESSED TCP packet will be dropped. A COMPRESSED TCP
packet transferred correctly will also be discarded if the previous packet was dropped. So the packet error
probability increases almost linearly until an UNCOMPRESSED TCP packet is received. After that, the
packet error probability will drop and start increasing again.
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Moreover, the compression efficiency is influenced by packet reordering. In the VJ compression algo-
rithm, uncompressed reference packets are sent when a new CID is created, when constant fields change for
a CID, and when the decompressor goes out of synchronization. When a packet can not be decompressed,
TCP will detect it by timeout or duplicated ACKs and retransmit it. The compressor will find this retransmit-
ted packet has a smaller sequence number than the previous packet, which causes a a negative delta value.
The compression algorithm will disable the occurrence of negative delta value and force a full header to be
transferred in this case. This mechanism makes sure that the information of one CID are refreshed on the
decompressor side. But, it is also activated by packet reordering even when no packet loss occurs. When
reordering happens, the sequence of packets arriving at the compressor is not the same as when they left the
sender. There are packets that arrive at the compressor later than some packets which, at the TCP sender,
enter the network following these packets and have larger sequence numbers. These packets will be sent
with a full header instead of a compressed header. This introduces difficulties on estimating compression ef-
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ficiency. Let � be the header size before compression and � the average compressed header size, supposing
all other factors except packet reordering have been considered. If reordering is only a pathological behav-
ior, which is rare, the compression ratio can be estimated as ���������
	��
����� ������� . But since reordering could
be more prevalent, we need to consider the effect on the compression ratio. Define � to be the percentage
of packets that are received after their subsequently transmitted packets. Then, the compression ratio should
be

��� � ������� ������� ��� �"!$# �%�"!&��� (1)

Now, let’s analyze � ���'�(���
	��)���'��� �*� � �������+!&����� � ������� , the error rate of the estimated compression ratio.

� ���'�(���
	��
�����,� ��� � �������+!&����� � ���-�
� ���.� ���/� �0#1� �2�3�4� ��!��$! (2)
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Figure 2: Estimation error rate of the compression ratio

This ratio is plotted in Figure 2. While using VJ compression, the typical size of the COMPRESSED TCP
is ranged from 5 to �	� bytes when no optional fields exist for the original headers. We show three curves
for the estimation error rate on compression ratio. One is when the designed compression ratio is low, at � �
to 5 
 . This corresponds to a TCP (

� 
 bytes) and an IPv4 header (
� 
 bytes) being compressed to � � bytes.

When packets need to be tunneled to a mobile node, the original packet is encapsulated in one extra IPv4
header. With one layer of encapsulation, the total header will be ��
 bytes. It can be compressed to �	� bytes,
which is shown in the second curve. It can also be compressed to � bytes and this is drawn in the third
curve. We can find that the more efficient the compression algorithm, which is indicated by a smaller value
of ����� , the more error on estimating the compression ratio given a certain value of � .

4.2 Twice Algorithm

Packet reordering also triggers the twice algorithm to send UNCOMPRESSED TCP packets. This will
decrease the compression ratio, the same as discussed for VJ compression.

Packet reordering has more influence on the performance of the twice algorithm. In this algorithm, if
one packet is lost, subsequent packets are tried to be decompressed by applying their delta values two or
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even more times. If packets are of the same size and there is no reordering/loss before the compressor, the
algorithm will always recover the loss on the link between the compressor and decompressor. But, when
there is reordering before the compressor, the result will be different.

Consider several packets belonging to one connection. We number them from 1 to 6, as the sequence
when they were sent out from the sender. Assume the TCP data payload of the packets are all of the same
length, � . Then, the compressed packets will all have the delta value � for sequence number.

�������	��
 � � � 5 � �
� �
��
������������ � � � � � �

No matter which one is lost on the link, or even if several consecutive ones are corrupted, the decom-
pressor can recover all other packets after the loss.

But, if packet 4 and 5 are reordered before the compressor, the delta value carried by the compressed
packets are quite different and the twice algorithm can not work correctly under some cases. If packet 3
was corrupted, packet 5 can not be decompressed. The reason is the delta value carried by packet 5 is

� � ,
applying it two or more times still can not recover the original value. Similarly, if (4), (5, 4), or (3, 5, 4) are
lost, 6 can not be decompressed. Obviously, when packets are not of the same size, the twice algorithm also
fails to eliminate error propagation.

�������	�

 � � � � 5 �
� �
��
������������ � � � � � � ����� ��� ��� � �
� � �

The reason for this error propagation phenomenon is that the twice algorithm assumes that most com-
pressed packets have the same delta value for some applications. But, even for the these applications,
reordered packets make this assumption invalid, which causes the twice algorithm not perform well. So
if a packet cannot be decompressed, also using the packet length instead of the delta value to recover the
sequence number could be helpful.

When a packet can not be decompressed, the twice algorithm assumes one or more packets are lost on
the link between compressor and decompressor. But, packet reordering makes the sequence between packets
more complex. Also, take the above example. This time, packet 6 comes before packets 4 and 5.

�������	��
 � � � � 5 �
� �
��
������������ � � � � � � ����� ��� �
� � ��� �

If packet 4 is lost, then packet 5 can not be decompressed using twice. Now, packet 5 seems to be coming
later than the previous packet seen by the decompressor, instead of one packet missing before packet 5. In
this situation, extending the twice algorithm to also subtract the delta value from the sequence number will
be helpful.

In the examples we used, TCP/IP is assumed to have packet reordering only within a small range, up to
3 packets. It is clear that packet reordering does hamper the performance of the twice algorithm even in this
situation.

The packet error probability for the twice algorithm is also shown in Figure 1. the twice algorithm works
fine if most of the packets are of the same size and no packet reordering happened. When packet reordering
does occur, the packet error probability could increase almost linearly just as in VJ header compression. If
applying delta values more times can decompress a subsequent packet, the error probability will become
low again. Otherwise, the probability can drop only when a packet with full header is received by the
decompressor.

The errors that can pass link layer detection also influence the performance of the twice algorithm. We
define error masking probability as the probability that those errors are not detected by the TCP checksum
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and thus passed to higher layer. The error masking probability of TCP checksum needs more analysis. The
influence on VJ header compression of this issue also needs further consideration. But, one point is clear, the
error masking probability of the twice algorithm is higher than that of VJ compression. If the delta values are
applied once and the TCP checksum is not correct, the actual reason may be some errors in the data payload
or other bytes in the header of the packet. Then, when the delta values are applied two or even more times,
the probability increases that the TCP checksum matches the packet. In this case, errors that could be found
in the VJ algorithm will be passed to higher layers. For example, assume the decompressor is synchro-
nized with the compressor and the previous sequence number is xxxxxxxx,xxxxxxxx,xxxxxx1x,xxxxxxxx,
where x means either 0 or 1. And assume the decompressor receives a compressed packet with the delta
value of sequence number 512, the delta value of ACK number 0. But in this packet, there is an er-
ror that avoided the link-level CRC. That is, one of the 2-octets as is used for TCP checksum, either
in the header or in the data payload part, was changed from xxxxxxxx,xxxxxxxx,xxxxx1xx,xxxxxxxx to
xxxxxxxx,xxxxxxxx,xxxxx0xx,xxxxxxxx. And only this one bit got corrupted. Then, when the decompres-
sor tries to recover the packet, the TCP checksum indicates an error if the delta value is applied once. The
TCP checksum is correct when the delta value is used twice, which is an indication that the packet has been
decompressed correctly. Thus, the error is passed to the higher layer with a wrong sequence number.

Given that an error has passed the link-level CRC, the more times the delta value is applied, the more
likely that the error can be passed to the layer above TCP. Similarly, if a sophisticated implementation of the
twice algorithm [3] is used to make more educated guesses for the acknowledgment stream, where the delta
value for the ACK number is not regular due to delayed ACK mechanism, there is an increasing probability
that the errors can pass the transport layer error detection.

4.3 TCP Aware RObust Header Compression (TAROC)

TCP Aware RObust Header Compression (TAROC) improved one of the encoding methods, window based
LSB. W LSB sends the delta fields only as the changed lower bits relative to the corresponding fields be-
longing to a certain window. TAROC restricts the size of the window according to the sliding window of
TCP flow control. The TCP sender can transmit a packet only after all the packets belonging to the previous
sliding window have been acknowledged by the receiver. In other words, if the window size is ����� � when
one packet is transmitted, the decompressor must have received correctly all those packets ����� � before
this packet. TAROC then use this knowledge and W LSB encoding to compress the header. Theoretically,
TAROC will work perfectly if the compressor knows when the sender changes the window size. Unfor-
tunately, this is not an easy task. TAROC uses the packet arrival sequence as the window size indication.
Again, packet reordering will influence the accuracy of this estimate. If packet reordering will be assumed
as an indication of packet loss at the compressor, the compressor believes that the sender has adopted a
smaller window size following that. Thus, the decompressor is assumed to has received a number of pack-
ets correctly, where the number is more than what actually has been received. This will potentially make
the decompressor work incorrectly. We give the packet error probability in Figure 3. In order to show the
difference between TAROC and TCP/IP without header compression, we use a logarithmic scale on the Y-
axis. The probability for TAROC is very low if the compressor can make an accurate estimate of the sliding
window size. However, if the compressor makes a smaller estimation, all the packets will be dropped until
an UNCOMPRESSED TCP packet is received.

On the other hand, for some TCP connections with large bandwidth-delay products, the sliding window
size could be very large. The advantage of W LSB will become smaller or even no bits can be compressed
in this situation.
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5 Adaptive Header Compression Algorithm

5.1 Wireless Link and Connection Consideration

For mobile radio channels, especially the channels used for typical transmissions from a base station to
mobile users in an urban environment, Rayleigh fading is the widely accepted model. Fading causes periods
of significant degradation of the received signals. Received signals determine the bit error rate (BER) seen
by the receiver. When the signal to noise ratio is above a certain threshold, the channel is assumed to be
in the good state with a low BER. On the other hand, when the ratio is below this threshold, the channel
is in the bad state, where the BER is quite high. Under the Rayleigh fading model, the wireless channel is
considered to have these two states and keep changing between the states.

When the wireless channel is in the good state, original packets can be transferred correctly with high
probability. Compressed packets can have an even higher probability of correct transmission. Any saving
on the bandwidth will be beneficial for the particular connection as well as the whole network. The only
task in this state is to lessen or eliminate error propagation. When the wireless channel is in the bad state,
both original packets and compressed packets can barely be transmitted correctly. As long as the header
compression algorithm can lessen the error propagation for the next good period, the algorithm will have
good performance. Unfortunately, it is almost impossible for the compressor of a wireless channel to know
the current state of the link. But the sender may know some general characteristics of the wireless link and
select a proper header compression algorithm. The algorithm can also be adapted following the channel
changes throughout the connection period.

From the performance discussion of previous header compression algorithms, we can reach the con-
clusion that assuming no reordering or minor reordering will introduce problems in typical connections,
especially those with large bandwidth-delay products. While the influence of packet reordering on TCP per-
formance needs more consideration, the best use of the communication channel is to transfer these packets
efficiently. So the task of header compression becomes transferring the packets in the sequence as received
from the previous node, using as little bandwidth as possible.
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5.2 Adaptive Header Compression

Based on the previous discussion, we present the following algorithm, the adaptive header compression
algorithm, to achieve a good tradeoff between the throughput and the compression ratio.

The packet types we use are similar to those defined in [7] [3] [5] [6]. We use the W LSB to do the
delta field encoding. We can also combine all the delta fields together and use padding to keep them aligned
to byte boundaries. For each packet, we use a certain number of packets received before hand to do the
W LSB encoding. Since assuming a fixed sequence between the TCP packets will potentially hamper the
performance, we make no such assumption. As long as the decompressor has received any packet of this
group correctly, it will decompress this packet correctly. For wireless links in the good state or if the period
of bad state is short, the probability that a group of packets are all corrupted is still low. In a long-term
bad state, the probability could be high. In order to handle this, we send UNCOMPRESSED TCP packets
periodically to refresh the decompressor. By designing the algorithm carefully, we can send more packets
during the good state while making decompressor work properly shortly after the bad state ends.

The compressor performs as follows:

� Define two variables, ��� � ��� ��������� and � ��	�
�� � ��� . These two variables can be adapted according to
the link condition and the average packet size. ��� � ��� ��������� determines how many packets should
be used to do W LSB encoding, and � ��	�
�� � 
 defines how frequently a SEMICOMPRESSED TCP
should be sent to make the decompressor synchronized with the compressor.

� For the first ��� � ��� ��������� packets belonging to the connection, send an UNCOMPRESSED TCP
packet with exponential distance, send other packets as SEMICOMPRESSED TCP. In other words,
send packet (

� � � � ) as UNCOMPRESSED TCP and all other packets as SEMICOMPRESSED TCP.
If the �
� � ��� ��������� is small, send all the first ��� � �
� ��������� packets as UNCOMPRESSED TCP.

� After this, send a SEMICOMPRESSED TCP packet every � ��	�
�� � ��� packets. If within the previous
� ��	�
�� � ��� packets one SEMICOMPRESSED TCP has been sent, send a COMPRESSED TCP instead.

� Whenever one or more constant fields change, send the packet as UNCOMPRESSED TCP.

� If a packet has a sequence number seen by the compressor before, send it as UNCOMPRESSED TCP.

� Other packets are sent as COMPRESSED TCP, with delta fields using W LSB encoding. The window
is composed of the previous ��� � �
� ��������� packets sent by the compressor.

When the packet size is large, or there is severe packet reordering, or �
� � ��� ��������� is big, COMPRESSED TCP
sometimes can not compress on the delta fields. If this happens, as described for sending SEMICOM-
PRESSED TCP, we will skip the next SEMICOMPRESSED TCP. This will increase the compression ratio
without increasing error propagation.

For the decompressor:

� Record or update the fields when receiving an UNCOMPRESSED TCP packet and pass the packet to
the upper layer.

� Recover the constant fields in a SEMICOMPRESSED TCP packet and update the delta fields. If
there is no UNCOMPRESSED TCP received before this packet, store this packet and decompress it
whenever an UNCOMPRESSED TCP packet arrives.

� Recover the COMPRESSED TCP packets based on the most recent received packet. If the decom-
pressed packet is correct as indicated by the TCP checksum, update the delta fields.
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From the compression method, it is clear that packet reordering will not make the compression malfunc-
tion. The only influence is that the length of delta values might be longer. The value of �
� � ��� ��������� and
� � 	

�� � ��� are determined by the average BER of the link and the average packet size.

The higher the BER, the bigger the �
� � ��� ��������� and the smaller the � ��	�
�� � ��� . On the other hand,
the lower the BER, the smaller the �
� � ��� ��������� and the bigger the � ��	

�� � � � . When ��� � �
� ��������� � �
or � ��	�
�� � ��� � � , all the packets are sent as SEMICOMPRESSED TCP, which is for links with a very
high error rate. When �
� � ��� ��������� becomes smaller, the COMPRESSED TCP contains a shorter header,
which will increase the compression ratio. But as the probability that all the packets in the ��� � �
� ��������� got
corrupted becomes high, the error propagation becomes severe. One thing to be noticed is that for a certain
BER level and average packet length, there exists a proper ��� � �
� ��������� value. This ��� � �
� ��������� value
will give good performance and increasing this value will not make much difference in the packet error rate.
As � ��	�
�� � ��� grows bigger, fewer SEMICOMPRESSED TCP packets will be sent, which is suitable for
links with lower BER. When � ��	

�� � � � decreases, more frequent SEMICOMPRESSED TCP packets will
refresh the state of the decompressor more often. This will give good decompression results even for higher
BER.

Both ��� � �
� ��������� and � ��	�
�� � ��� are influenced by the average packet size. For small packets, we can
select a large ��� � �
� ��������� and a large � ��	�
�� � ��� . A large ��� � �
� ��������� decreases the error propagation,
which can still yield a good compression ratio for small packets. Since the error propagation has been
decreased by large �
� � ��� ��������� , we can then choose a larger � ��	�
�� � ��� , which in turn increases the com-
pression ratio. Similarly, we can use small values of �
� � ��� ��������� and � ��	

�� � � � for large packets.

5.3 Performance of Adaptive Header Compression

For our Adaptive Header Compression algorithm, define the error probability for the SEMICOMPRESSED TCP
to be � � and let � � be the error probability for packet � . Then, assuming no UNCOMPRESSED TCP header
is generated after the first ��� � ��� ��������� packets, the error probability of every packet is as follows:� � � � � where � � ��� � �
� ��������� and � � ��� � � , ������� � �������� � � � � where � � ��� � �
� ��������� and �
	� � � � � , ������� � �������� � � � � where ��� ��� � �
� ��������� and � ��
 ��� � � 
�� ���
��&��������� � � ��� , � � 
�� ���������

� � � � � #�� 
 ��� � � 
�� ���)������ � � � � � � �.� � � ! where �!� �
� � ��� ��������� and � ��
 ��� � � 
�� ���)��&���(���"� � � 	��� , ��� 
�� ���������
We give the calculated packet error probability in Figure 4 and Figure 5. These figures demonstrate the

error probability for each packet sent from the compressor. We use a bit error rate of ��
 ��
 , the length of
an UNCOMPRESSED TCP packet as ��� � bytes, the length of a SEMICOMPRESSED TCP packet as � � �
bytes, and the length of a COMPRESSED TCP packet as ���	� bytes. We also assume no constant fields of
the header have changed. In other words, all packets are sent using the compressed header when possible.
The packet error probabilities are plotted in Figure 1 and Figure 3 when VJ, twice, and TAROC are used
under the same conditions. Using the algorithm we proposed the packet error rates are either � � or � � for
the first �
� � ��� ��������� packets. After that, the error rate oscillates within a range. Periodically, a packet
with original delta fields will be sent, which has a higher error probability. Between these packets, packets
are sent using the compressed header, with almost a constant lower error probability. Figure 4 presents the
situation when � ��	�
�� � ��� is selected as 5 . Figure 5 is the situation with � ��	

�� � � � as � � .

It is clear that the average packet error probability is even smaller when � ��	

�� � � � becomes larger within
a certain range. This seems to conflict with the design objective. However, recall that the formula was
computed using the assumption that the errors are uniformly distributed. The graphs thus indicate the
situation when the wireless link is in good state. When the wireless link just exits a bad state, a smaller
� � 	

�� � ��� will refresh the state of the decompressor quicker and give better decompression results.
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Figure 4: Packet error probability using Adaptive compression, ��� � �
� ��������� � � � , � ��	�
�� � ��� � 5 , �������
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 ��


6 Conclusion

So far, we have discussed some recently observed computer network problems. These problems worsen the
performance of existing header compression algorithms, which are also described. Moreover, we provide a
new algorithm, which can achieve better performance when used over wireless links and can address these
problems. Our further work includes using simulation or emulation to test how packet reordering and packet
loss influence the performance of header compression schemes for application traffic.
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