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Abstract—Kernel modules are an integral part of most oper-
ating systems (OS) as they provide flexible ways of adding new
functionalities (such as file system or hardware support) to the
kernel without the need to recompile or reload the entire kernel.
Aside from providing an interface between the user and the
hardware, these modules maintain system security and reliability.
Malicious kernel level exploits (e.g. code injections) provide a
gateway to a system’s privileged level where the attacker has
access to an entire system. Such attacks may be detected by
performing code integrity checks. Several commodity operating
systems (such as Linux variants and MS Windows) maintain
signatures of different pieces of kernel code in a database for code
integrity checking purposes. However, it quickly becomes cum-
bersome and time consuming to maintain a database of legitimate
dynamic changes in the code, such as regular module updates.
In this paper we present ModChecker, which checks in-memory
kernel modules’ code integrity in real time without maintaining a
database of hashes. Our solution applies to virtual environments
that have multiple virtual machines (VMs) running the same
version of the operating system, an environment commonly found
in large cloud servers. ModChecker compares kernel module
among a pool of VMs within a cloud. We thoroughly evaluate
the effectiveness and runtime performance of ModChecker and
conclude that ModChecker is able to detect any change in a
kernel module’s headers and executable content with minimal or
no impact on the guest operating systems’ performance.
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I. INTRODUCTION

Dynamic kernel modules are used to extend the functionality
of the static kernel within an operating system, such as adding
support for new hardware. These modules, commonly known
as drivers, can be dynamically attached or detached from
the kernel without restarting the system or recompiling the
kernel. By retaining only the primary functionality that is
required to run an operating system, the static kernel can
remain small [1]. Most modern operating systems such as
Linux variants (FreeBSD or Solaris) and Microsoft (MS) Win-
dows support dynamic loadable kernel modules. This provides
more flexibility than the traditional method of recompiling
the kernel to add additional functionality while retaining the
same capabilities as the code compiled into the kernel [1].
Nonetheless, dynamic kernel modules can be exploited to
add malicious functions to the kernel or subvert the entire
operating system. For instance, a rootkit [2] acts like a kernel
module and can hide directories, files, processes and network
connections. Therefore, in order to prevent the kernel from

being compromised, a kernel module must be trusted and its
integrity must not be compromised.

A state-of-the art solution maintains a dictionary of cryp-
tographic hashes of trusted kernel modules [3], [4] and
verifies the validity of a kernel module by matching its hash
with the stored value. For example, MS Windows registers
and maintains digital signatures for kernel modules that MS
Windows uses to verify the module’s integrity upon loading
it into memory [3]. MS Windows does not, however, check
modules for malicious contents and does not use the signatures
to perform any integrity checking after the module is loaded
in memory. Furthermore, it is cumbersome to maintain the
dictionary for kernel updates [5], third party drivers, and valid
customized modules.

In this paper, we present ModChecker, which examines
the integrity of kernel modules in real time without maintain-
ing a dictionary of hashes. ModChecker works in virtualized
environments where multiple VMs have the same operating
system running. By comparing a module’s hash value among
the VMs, ModChecker verifies that module’s integrity. Only
modules actually loaded in memory are checked. The module
file contains relative virtual addresses that the module loader
replaces with corresponding absolute addresses when it is
loaded into memory. The absolute address is computed by
adding the relative virtual address to module’s base address
(i.e., the address of the first byte of the memory loaded
module). Since the module is often relocated once loaded in
memory, its absolute addresses vary accordingly. This makes
computing the hash of a complete in-memory module unsuit-
able. Thus, ModChecker extracts all the headers and read-only
executable contents of a module and computes their hashes
separately. ModChecker was evaluated in a cloud computing
environment [6]. This cloud provided us with a realistic
environment where multiple identical VMs are running at the
same time [7]. To benchmark ModChecker, several kernel
exploitation techniques were used to exploit several system
modules under MS Windows XP SP2. The results show that
ModChecker can detect various types of kernel exploits with
minimal impact on a guest operating system’s performance.

The rest of the paper is organized as follows: Section II
summarizes the related work. Section III presents ModChecker
and details its architectural assumptions. Section IV outlines
the implementation and section V is the evaluation. Section VI
concludes the paper.



II. RELATED WORK

There has been a large volume of work published on kernel
integrity monitoring, specifically focusing on control flow
integrity, as well as data and code integrity. This section covers
the existing approaches and tools that are most related to
ModChecker.

Rutkowska proposes System-Virginity-Verifier (SVV) [8]
that verifies the integrity of the in-memory code section of sys-
tem drivers and Dynamic Link Libraries (DLL). It compares
the in-memory code to the corresponding (reference) Portable
Executable (PE) file on disk. SVV and ModChecker are similar
in that they are based on a cross-view approach and share the
same goal of verifying the integrity of the in-memory modules.
Unlike ModChecker, however, SVV must be deployed within
the system. Moreover, most malware infects files on disk first,
and then loads the infected file into memory [9]. Therefore,
SVV cannot pinpoint the infection when both memory and
the file contain the same infected code. ModChecker, on the
other hand, is more robust since it uses the cross-view from
a separate, isolated system. Unless all the VMs in a cloud
are compromised, ModChecker can effectively detect code
integrity violations.

Commodity operating systems, such as MS Windows and
several Linux variants, enable digitally signed kernel mod-
ules [3], [4]. This means that they compute and maintain a
database of cryptographic hash values for kernel modules. The
operating systems use this hash value to verify the integrity
of the module before it is loaded into memory. However, this
mechanism neither checks the module for malicious content
when the module is initially signed nor does it guarantee
integrity of the module after it is loaded into memory.

Garfinkel et al. propose LIVEWIRE [10], which is a Virtual
Machine Monitor (VMM) based intrusion detection system
that has the capability of checking the integrity of well known
user programs such as sshd, ietd and syslogd. Livewire
keeps a hash of a known good program and periodically
compares it with the hash of in-memory code sections to
detect code integrity violations. The Livewire approach is also
applicable to well known kernel modules and dynamically
linked libraries. However, it cannot be generalized due to the
fundamental requirement of having a good hash of the in-
memory code.

Loscocco et al. present Linux Kernel Integrity Monitor
(LKIM) [11], which verifies the integrity of static kernel code
with cryptographic hashes and examines the dynamic data
structures to verify the integrity of function pointers. LKIM
does not maintain a list of module hashes to check kernel
module integrity, since the modules are relocated at runtime
and the addresses of key data structures cannot be known until
relocation. To solve this problem, LKIM modifies the Linux
kernel that supplies it with modules’ loading information (i.e.,
its name and the addresses of each section). In order to
evaluate a module’s integrity, LKIM uses this information
along with the untainted copy of the code to simulate the
loading process.

Arvind et al. propose Pioneer [12], which verifies code
integrity and ensures that code remains intact during execu-
tion inside an untrusted environment. Pioneer is based on a
challenge-response protocol between a dispatcher (an external
trusted entity) and the untrusted computing environment. The
dispatcher sends a challenge in order to invoke a self-checking
function that computes a checksum of the code and sends it
back to the dispatcher. The dispatcher has a copy of the code
that it uses to verify the checksum is correct and is received
in an expected amount of time. This guarantees the dispatcher
that a ”dynamic root of trust” exists within the untrusted
environment.

Neugschwandtner et al. propose dAnubis [13], which
dynamically analyzes malicious MS Windows device drivers.
It includes integrity checking of drivers by placing them
under supervision. In case of integrity violation, it matches
the kernel function addresses with the ones obtained from
Windows debugging symbols. The difference in addresses
helps in identifying the function that has been patched.

III. KERNEL-MODULE INTEGRITY CHECKER

In a fully virtualized environment such as a Cloud [14], a
VMM is the heart of that environment [7]. A VMM allows
multiple operating systems to run on VMs that are inherently
running on the same computer hardware concurrently. This
type of infrastructure allows one VM to monitor various
runtime resources (memory, disk etc.) of other VMs through
virtual machine introspection (VMI) [15]. While running under
a main, privileged virtual machine, ModChecker acquires
memory access of other virtual machines through VMI and
cross-matches the contents of a module across a pool of VMs
in order to verify the integrity of a module. The efficacy of
ModChecker is based on the following realistic assumptions.

A. Assumptions

We assume a typical cloud computing environment consist-
ing of hardware, VMM (or hypervisor such as Xen [4]), guest
VMs and a privileged VM (where ModChecker accesses the
memory contents of the guest VMs through introspection).

B. ModChecker architecture

ModChecker is designed to be simple, effective and easily
deployable. It runs on a privileged VM and through introspec-
tion it performs read-only operations of the memory of guest
VMs.

Figure 1 shows the architecture of ModChecker that
has three components: Module-Searcher, Module-Parser and
Integrity-Checker.

1) Module-Searcher: Module-Searcher is the only compo-
nent of ModChecker that accesses the memory of guest VMs.
It finds the list of active modules and then looks for the module
that is being checked for integrity violation. If the module is
in memory, ModChecker extracts the entire module from the
guest VM’s memory and passes it to the Module-Parser that
extracts the headers and executable contents.



Module-­‐
Searcher

Module-­‐
Parser

Integrity-­‐
Checker

ModChecker

Privileged  VM

User  Space

Kernel  Space

Virtual  Machine  Monitor

Hardware

User  Space

Kernel  Space

User  Space

Kernel  Space

Guest  VM  1 Guest  VM  2 Guest  VM  3

Fig. 1. ModChecker Architecture

2) Module-Parser: Module-Parser processes the module af-
ter receiving it from Module-Searcher. The module in general
maintains a specific format when it is loaded into memory,
that specifies its header and content information. The format
depends on the operating system platform. For instance, in MS
Windows, modules have portable executable (PE) format. The
Module-Parser extracts headers and executable contents and
passes them to Integrity-Checker that evaluates their integrity.

3) Integrity-Checker: Integrity-Checker has two primary
functions. Firstly, it computes the hashes of the headers and
the contents of the module and compares them to the same
module loaded into other VMs. Secondly, it adjusts the relative
virtual addresses (RVAs) in the executable content. RVA is
the offset from the base address (the first byte of the module
loaded into the memory). Once the kernel module loader loads
a module, it adds the base address to the RVAs to get their
absolute virtual addresses. The loader replaces the RVAs with
their absolute addresses and that makes the same executable
content inconsistent among multiple VMs. Integrity-Checker
reverses these changes by computing the RVAs and replacing
the absolute addresses with their corresponding RVAs. This
functionality is essential in order to match the hashes of the
same executable content that are fetched from other VMs.

Discussion: Integrity-Checker compares a module from a
VM with modules from other t− 1 VMs (where t is the total
number of machines in a cloud that are running the same
version of a guest operating system) to figure out whether
the module has been altered or infected. It keeps track of the
number of times the hashes of all the headers and content
have been matched successfully. If the number of successes
n are in majority from the total number of comparisons
(i.e. n > (t − 1)/2), Integrity-Checker concludes that the
module has not been altered. This approach is only effective if
majority of the VMs are running the original (or uninfected)
modules. However, there are cases when malware such as SQL
Slammer 1 [16] can rapidly infect most of the machines in
a network and this would possibly make the above approach
raise false alarms. However, in either of the above cases,

1It is worth noting that SQL Slammer is a buffer overflow exploit that does
not modify kernel code and thus, cannot be detected by ModChecker.
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Fig. 2. Doubly linked list of the in-memory kernel modules

ModChecker is capable of detecting discrepancies among
VMs that can trigger a more comprehensive, deeper analysis
tools for further investigation and clean up. Furthermore,
in a virtualizated environments, it is possible to keep clean
snapshots of VMs and upon detecting any discrepancy, the
machine(s) can be reverted back to their clean state to flush
infections.

IV. IMPLEMENTATION

The ModChecker design is portable to any VMM (e.g. Xen,
KVM or VMware ESX) that has support for VM introspection.
For the proof of concept, we developed a prototype of Mod-
Checker on Xen [4] that had MS Windows XP (Service Pack
2) VMs running. We used the libVMI library [15] to introspect
the memory of Windows XP virtual machines. Moreover,
we used the OpenSSL [17] library to get the support for
computing MD5 message digests.

This section further describes the low-level implementation
details of the components of the ModChecker.

A. Module-Searcher
Module-Searcher looks for the module in memory that is

being checked for integrity. The list of the active modules
(that are currently loaded into memory) is maintained as a
doubly linked list (refer to Figure 2). Each node in the list is
represented by the structure LDR_DATA_TABLE_ENTRY that
contains the module name BaseDllName, and the base ad-
dress DllBase (i.e. starting byte of the module in memory). It
also contains the pointers to the next FLINK and the previous
BLINK modules that are used to traverse the list in forward
and backward directions. Module-Searcher obtains the pointer
of the first element in the list using a system global variable
PsLoadedModuleList and traverses the list to look for the
module that is being checked for integrity violation by name.
Once the module is found in the list, Module-Searcher obtains
the base address of that module and copies the whole module
from the virtual machine’s memory to a local buffer and then
passes the buffer pointer to Module-Parser.

B. Module-Parser
The Module-Parser receives the module from Module-

Searcher and begins extracting the headers and con-
tents. The format of the module in MS Windows is
a portable executable. Figure 3 shows the relationships
among portable executable headers. Module-Parser starts with



00000000|    00  00  00  00  00  00  00  00    00  00  00  00  00  00  00  00      ................
00000010|    8b  ff  55  8b  ec  68  E0 24  CC F8  e8  39  00  00  00  83      ..U..h.$...9....
00000020|    c4  04  5d  c2  04  00  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ..].............
00000030|    8b  ff  55  8b  ec  8b  45  08    c7  40  34  90 24 CC F8  68      ..U...E..@4.$..h
00000040|    00 25 CC F8  e8  0f  00  00    00  83  c4  04  33  c0  5d  c2      .%..........3.].
00000050|    08  00  cc  cc  cc  cc  cc  cc    ff  25  84 25 CC F8  cc  cc      .........%.%....
00000060|    44  72  69  76  65  72  20  75    6e  6c  6f  61  64  69  6e  67      Driver  unloading
00000070|    0a  00  cc  cc  cc  cc  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ................
00000080|    48  65  6c  6c  6f  2c  20  57    6f  72  6c  64  0a  00                  Hello,  World..
MD5: 0c283347b0360e8ffcd3775a882297ec

00000000|    00  00  00  00  00  00  00  00    00  00  00  00  00  00  00  00      ................
00000010|    8b  ff  55  8b  ec  68  E0 C4  D0 F8  e8  39  00  00  00  83      ..U..h.....9....
00000020|    c4  04  5d  c2  04  00  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ..].............
00000030|    8b  ff  55  8b  ec  8b  45  08    c7  40  34  90 C4 D0 F8  68      ..U...E..@4....h
00000040|    00 C5 D0 F8  e8  0f  00  00    00  83  c4  04  33  c0  5d  c2      ............3.].
00000050|    08  00  cc  cc  cc  cc  cc  cc    ff  25  84 C5 D0 F8  cc  cc      .........%......
00000060|    44  72  69  76  65  72  20  75    6e  6c  6f  61  64  69  6e  67      Driver  unloading
00000070|    0a  00  cc  cc  cc  cc  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ................
00000080|    48  65  6c  6c  6f  2c  20  57    6f  72  6c  64  0a  00                  Hello,  World..
MD5: 4e69d8bd25ac5d78a411db48a5bd26f0

00000000|    00  00  00  00  00  00  00  00    00  00  00  00  00  00  00  00      ................
00000010|    8b  ff  55  8b  ec  68  E0 04  00 00  e8  39  00  00  00  83      ..U..h  ....9....
00000020|    c4  04  5d  c2  04  00  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ..].............
00000030|    8b  ff  55  8b  ec  8b  45  08    c7  40  34  90 04 00 00  68      ..U...E..@4p...h
00000040|    00 05 00 00  e8  0f  00  00    00  83  c4  04  33  c0  5d  c2      ............3.].
00000050|    08  00  cc  cc  cc  cc  cc  cc    ff  25  84 05 00 00  cc  cc      .........%|.....
00000060|    44  72  69  76  65  72  20  75    6e  6c  6f  61  64  69  6e  67      Driver  unloading
00000070|    0a  00  cc  cc  cc  cc  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ................
00000080|    48  65  6c  6c  6f  2c  20  57    6f  72  6c  64  0a  00                  Hello,  World..
MD5: d8079ea825d9de0f299aedf716afba3f

00000000|    00  00  00  00  00  00  00  00    00  00  00  00  00  00  00  00      ................
00000010|    8b  ff  55  8b  ec  68 E0 04  00 00  e8  39  00  00  00  83      ..U..h  ....9....
00000020|    c4  04  5d  c2  04  00  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ..].............
00000030|    8b  ff  55  8b  ec  8b  45  08    c7  40  34  90 04 00 00  68      ..U...E..@4p...h
00000040|    00 05 00 00  e8  0f  00  00    00  83  c4  04  33  c0  5d  c2      ............3.].
00000050|    08  00  cc  cc  cc  cc  cc  cc    ff  25  84 05 00 00  cc  cc      .........%|.....
00000060|    44  72  69  76  65  72  20  75    6e  6c  6f  61  64  69  6e  67      Driver  unloading
00000070|    0a  00  cc  cc  cc  cc  cc  cc    cc  cc  cc  cc  cc  cc  cc  cc      ................
00000080|    48  65  6c  6c  6f  2c  20  57    6f  72  6c  64  0a  00                  Hello,  World..
MD5: d8079ea825d9de0f299aedf716afba3f

A)  VM1     Before  RVAs  adjustment B)  VM2     Before  RVAs  adjustment

C)  VM1     After  RVAs  adjustment D)  VM2     After  RVAs  adjustment

Fig. 4. RVAs adjustment illustration for .text section-data of Hello World kernel module. The Modules (32-bit) base addresses for virtual machines
VM1 and VM2 are ’00 20 CC F8’ and ’00 C0 D0 F8’.
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Fig. 3. Correlations among Portable-executable headers

IMAGE_DOS_HEADER. The first two bytes of the mod-
ule are the e_magic magic numbers (specifically, ”MZ”)
in the DOS header. The header has a field e_lfanew
that points to IMAGE_NT_HEADER. The NT header has a
four-byte signature (whose first two bytes are ”PE”) and
the pointers (FileHeader and OptionalHeader) to
IMAGE_FILE_HEADER and IMAGE_OPTIONAL_HEADER.
The FILE header contains the size of the OPTIONAL header
SizeOfOptionalHeader and the number of sections
NoOfSections that come after NT header. A section has a
section header IMAGE_SECTION_HEADER and section data.
The section headers have the same size and are located in
a sequence. Each section header has a unique name Name,
a pointer VirtualAddress to its section data and the
size VirtualSize of the section data. It also contains a
Characteristics field that describes the features (e.g.
read-only or executable code) of section data. Module-Parser
uses this information to identify the section data that contains
executable code.

After verifying the magic number in the DOS header,
Module-Parser obtains the pointer to IMAGE_NT_HEADER.
It accesses the NT header that is followed by the FILE and
OPTIONAL headers. The section header starts just after the
NT header. Module-Parser extracts NoOfSections section
headers and further processes them to obtain their correspond-
ing section data. Module-Parser then passes the headers and
section data to the Integrity-Checker. Algorithm 1 represents
Module-Parsing code for extracting headers and section data.

Algorithm 1 Extracting headers and section data from kernel
module
1: IMAGE DOS HEADER dos
2: IMAGE NT HEADER nt
3: IMAGE FILE HEADER file
4: IMAGE OPTIONAL HEADER opt
5: IMAGE SECTION HEADER sec
6: Copy dos ← buffer[1,sizeof(IMAGE DOS HEADER)]
7: Obtain NToffset ← NT header offset
8: Copy nt ← buffer[NToffset, sizeof(IMAGE NT HEADER)]
9: Copy file ← buffer[NToffset+sizeof(SignatureNTheader),

sizeof(IMAGE FILE HEADER)]
10: Copy opt ← buffer[NToffset+sizeof(SignatureNTheader)+

sizeof(IMAGE FILE HEADER),
sizeof(IMAGE OPTIONAL HEADER)]

11: for i = 1 to file.NumberOfSections do
12: sec ← Copy buffer[NToffset+sizeof(SignatureNTheader)+

sizeof(IMAGE FILE HEADER)+
sizeof(IMAGE OPTIONAL HEADER)+
(sizeof(IMAGE SECTION HEADER)×i),
sizeof(IMAGE SECTION HEADER)]

13: Copy SectionData[i] ← buffer[sec.VirtualAddress, sec.VirtualSize]
14: end for

C. Integrity-Checker
Integrity-Checker computes the MD5 hash for each header

and the section data (that contains the executable code) and
compares their hash values with the ones obtained from the
same modules from other virtual machines. At this stage,
it is highly unlikely that the hash values of the executable
will match among the modules. This is due to the fact that
RVAs in the executable code are replaced with their absolute
addresses and these are different among virtual machines,
as the modules are loaded at different base addresses (refer
to Figure 4A & 4B). At this stage, the Integrity-Checker
scans the executable code, looks for the absolute addresses,



computes their corresponding RVAs (which are the same
across virtual machines) and replaces the absolute addresses
with their RVAs. This makes the executable code consistent
and their MD5 hashes are matchable (refer to Figure 4C
& 4D). Algorithm 2 represents Integrity-Checker code for
adjusting RVAs. Integrity-Checker computes the RVAs using
the following equation.

RV A = Absolute address − Base address (1)

Finding the absolute addresses: Integrity-Checker as-
sumes that while comparing the same executable code from
two virtual machines, the difference in bytes within the code
represents the absolute addresses. (The assumption is valid
until the code is altered by an adversary). On a 32-bit machine,
the address consists of 4 bytes and ideally there should be a
difference of four consecutive bytes within the code. However,
it is possible that difference could be less than four bytes
depending on how many identical initial bytes the module’s
base addresses have. For instance, if the base addresses are
’00 CC 20 F8’ and ’00 CC 90 70’, the first two bytes
of the base address are the same. Thus, the absolute address
starts two bytes ahead from where the difference has been
detected.

Algorithm 2 Adjusting Relative Virtual Addresses (RVAs)
1: offset ← 0
2: IsDifferenceExist ← 0
3: for i = 1 to 4 do
4: offset++;
5: if BaseAddress1[i] �= BaseAddress2[i] then
6: IsDifferenceExist ← 1
7: break
8: end if
9: end for

10: if IsDifferenceExist == 1 then
11: for j = 0 to SectionHeader.VirtualSize do
12: if SectionData1 [j] �= SectionData2 [j] then
13: Copy(4-bytes) AbsoluteAddress1 ←

SectionData1[j − offset+ 1]
14: Copy(4-bytes) AbsoluteAddress2 ←

SectionData2 [j − offset+ 1]
15: RVA1 ← AbsoluteAddress1 - BaseAddress1
16: RVA2 ← AbsoluteAddress2 - BaseAddress2
17: if RVA1 == RVA2 then
18: Replace AbsoluteAddress1 with RVA1
19: Replace AbsoluteAddress2 with RVA2
20: end if
21: end if
22: j ← j − offset+ 1− 4
23: end for
24: end if

V. EVALUATION

A. Experimental Settings
For experimentation, we built a cloud environment. This

test bed featured a Quad Core i7 (2.67 GHz * 8) server with
HyperThreading enabled and 18 GB of RAM. This server had
a 64-bit privileged virtual machine (DomO) running Fedora 16
(kernel 3.3.2-6) along with Xen 4.1.2 [4]. We instantiated 15
VM clones (DomU: Dom1-Dom15) in Xen from a single 32
bit Window XP (SP2) installation to make sure that all VMs
are identical. Moreover, the automatic updates were disabled
to ensure no accidental updates alter any of the modules. We
used the introspection library for VMI (libvmi-0.6) [15] in all
the experiments.

B. Integrity checking
ModChecker is designed to detect the integrity violations

(that are often introduced by malware infection) in headers
and executable content of kernel modules running on multiple
VMs. We evaluated the effectiveness of ModChecker by man-
ually infecting common kernel modules in a way that imitates
the infection techniques often used by common rootkits to
exploit the kernel modules. Such techniques include, but are
not limited to, single opcode replacement, inline hooking of
DLLs and .sys files and PE file header infections [18], [19].

The following section describes detailed experiments that
affirm ModChecker’s ability to detect any modification in
headers and executable content within the kernel modules.
This detection is accomplished in real time provided that
at least one virtual machine runs the original (uninfected)
module.

1) Single opcode replacement: Initial experiments consist
of manually modifying the hardware abstraction layer ker-
nel module, C:\WINDOWS\System32\hal.dll, within a
single VM. Using Ollydbg [20] to open hal.dll library
statically, we have made minimal changes to the .text code
section. We modified a counter register decrement instruction
DEC ECX, HEX opcode 49, to its alternate instruction SUB
ECX, 1, opcode 83E901. Upon system restart, the newly
modified hal.dll file was loaded into memory containing
above mentioned modifications, despite the fact that this one
to three byte modification shifted the jmp offsets. ModChecker
analyzed the kernel modules from all the VMs, then reported
a different hash value of the .text section of the hal.dll
module within the VM containing the simple change. All
other sections and fields of the module continued to be
consistent with the kernel module sections of other concur-
rently running machines. An example of this minimal code
change is malware’s insertion of a specially crafted jump
instruction or modification of the pointer that references a
legitimate function. This is done to divert module’s control
flow to an address designated by the malware. This part of
the experiment shows that a change to a single opcode will
result in ModChecker raising a flag.

2) Inline Hooking: Inline hooking is a commonly used ap-
proach to divert control flow from legitimate code to malicious
code that has been injected [9], [18], [19]. A typical method
for accomplishing this is to insert jmp functions within the
body of a function. An example of such malware is the
TCPIRPHOOK rootkit. As shown in [19], this rootkit inserts
hooks into the kernel module to intercept function calls and
modify the result data obtained by network connection queries.
Similarly, Win32.Chatter virus [9] infects .sys files by
hooking kernel level functions to perform user level payload
injection.

We use the hal.dll kernel module to create hooks for
the purposes of our experiment. As shown in Figure 5 the
inline hooking mechanism relies on finding appropriate non-
executable code segments, known as opcode caves, such as
00 instructions, to place its payload. The first three lines of
assembly instructions are replaced with a jmp hook which



(a) Before Inline Hooking

(b) After Inline Hooking

Fig. 5. Change made by Inline Hooking to hal.dll

redirects execution to the newly injected payload. Further-
more, the injecting malware performs sanitation of over-
written bytes before returning to the original entry function
hal.HalInitSystem. Windows OS did not catch this
change in control flow at runtime and loaded the infected
hal.dll into memory. Modchecker noted that the hal.dll
module loaded into memory contains code different from that
in the other VMs.

3) Trivial modification in stub program: The next ex-
periment involved replacing only three characters of the
stub program within the ’Hello World’ dummy driver with-
out changing the code alignment as shown in Figure 6.
The word DOS in ”This program cannot be run in
DOS mode” at the beginning of the header now becomes
CHK. The driver was loaded into the kernel using the OSR
Driver Loader [21] program. ModChecker’s analysis of the
DOS header distinguished the modified driver’s hash from
the hashes of the non-modified drivers in parallel VMs. As
other sections of the ’Hello World’ driver were left intact,
ModChecker found no differences in hash values.

4) PE header modification via DLL hooking: DLL hooking
within PE headers is a method of attaching extra, specially
crafted DLLs to a module in kernel or user space. In fact,
this mechanism can be used to hook functions not just to
.dll modules but also .sys modules as they are struc-
turally the same. Using the previously described inline hook-
ing technique, kernel module procedures may be redirected
to any dynamically linked procedure within the maliciously
referenced DLL. This is particularly useful when an inline
hooking method fails to find enough opcode caves to inject
its malicious payload. Using CFF Explorer [22], a sample
inject.dll module was inserted into a sample driver,
dummy.sys, and a sample message popup function was made
available to the driver by exporting a callMessageBox()
procedure. To successfully inject a dynamically linked library

(a) Before modification

(b) After modification

Fig. 6. Modification in the dummy driver

into a kernel module, PE headers have to be adjusted to
reference the attached functionality. Since additional code is
made available to the main executable process, the size of
the code visible to the module will change, thus increasing
the VirtualSize value in the section header [23]. Fur-
thermore, injecting extra code into the kernel module shifts
the locations of subsequent section headers and also modifies
the .text section data. Finally, the pointers that reference
these new header locations will be adjusted appropriately.
All these changes in the PE headers and the code section
contribute to differentiating this kernel module’s PE hashes,
as well as the hash of the .text section. A rootkit such as
Rustok.B creates hooks inside kernel’s Ntfs.sys module
that reference external functions [19], imitating the behavior
of our example above.

ModChecker performed integrity analysis of the loaded
dummy driver module and compared it to the dummy mod-
ule that had inject.dll attached to it. Using Mod-
Checker to detect executable kernel modules that have
additional libraries hooked to it is straight forward at
this point due to the mismatch of hashes in a num-
ber of module sections. Hash mismatches were detected
in IMAGE_NT_HEADER, IMAGE_OPTIONAL_HEADER, all
SECTION_HEADER‘s and .text field.

C. Runtime Performance

This section describes the runtime performance of Mod-
Checker. It discusses the best and the worst runtime case
scenarios and analyzes the impact of ModChecker on guest
VM’s system resources.

1) Best and Worst Case Scenarios of ModChecker: This
section details the best and worst runtime cases of Mod-
Checker. We used the module http.sys and compared it
across a number of VMs. We computed the best and the worst
running time of ModChecker by keeping the virtual machines
mostly idle, as well as increasing resource consumption by
running resource exhausting processes. For the latter case,
we used HeavyLoad (a stress testing software) [24] that is
capable of stressing all the resources (such as CPU, RAM and
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Fig. 7. Runtime performance of ModChecker (and its components) on
different number of VMs when they are mostly idle
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Fig. 8. Runtime performance of ModChecker (and its components) on
different number of VMs when they are exhaustively using their resources

disk) of an MS Windows machine.
Figures (7 & 8) illustrate the runtime performance of

ModChecker and its components under the best and the
worst case scenarios. In the best case, we noticed a linear
increment in the runtime as we increase the number of VM
for comparison. We also noticed that, unlike Module-Parser
and Integrity-Checker, the linear increment is also shown by
Module-Searcher that significantly effects the overall runtime
performance of ModChecker. The linear increment is com-
prehensible given that the current version of ModChecker
accesses the virtual machines’ memory in a sequence. The
modular design of ModChecker can support parallel access of
virtual machines’ memory which would considerably enhance
the runtime performance of ModChecker. Moreover, Module-
Searcher takes more time than other modules since Module-
Searcher has to access the memory by pages; an action that
requires an iterative access of the memory until the whole
module is copied to a local buffer.

The virtual machines share the same hardware resources
(CPU, RAM, disk) with the privileged VM where Mod-
Checker is being run. In the worst case, when the VMs
exhaustively use their resources, the privileged virtual machine
gets less hardware resources for ModChecker that effects the
ModChecker’s runtime performance. Moreover, we noticed a
sudden nonlinear growth in the ModChecker’s runtime when
the number of heavily loaded VMs exceeded the number of
available virtual cores, which we considered was the cause of
this growth.

2) Inside virtual machine - ModChecker’s impact on system
resources: This section measures ModChecker’s impact on
the system resources inside the virtual machine while it
accesses the machine’s memory. We expect ModChecker to
have insignificant impact on the machine’s internal resource
consumption since none of its components run inside the guest
VMs. We kept the virtual machine idle in order to detect any
significant change in the system’s resource utilization when
ModChecker accesses the memory.

We wrote a light-weight tool in Python to continuously
record the current state of a VM’s system resources. The
tool helped us baseline the normal usage of the resources
and identify any significant perturbation when the memory
is accessed by ModChecker. Our tool records the CPU state
(such as idle time, privileged time and user time), memory
state (such as percentage of free physical and virtual memory
and number of page faults), disk state (such as queue length
and disk read/write per second rate) and network state (such
as number of packets sent/received). The tool was run inside
the VM, upon which it recorded its state and sent it to an
external remote network storage device. The readings were
simple ASCII characters that did not put any significant impact
on the network. Moreover, this information was not stored on
the local file system since local disk is an important part of
virtual memory analysis.

Figure 9 shows the state of the CPU and memory of the
guest VM and also explicitly zooms in on the time spans when
the memory was being accessed by ModChecker. The graphs
depict no significant perturbation during the time span when
memory was accessed by ModChecker. Thus, we conclude
that ModChecker does not place any considerable burden on
the system resources of the virtual machine.

VI. CONCLUSION

The detection of sophisticated modern malware infections
inside kernel space poses challenges in terms of effectiveness
and efficiency. In this work, we presented a modular approach
(for a cloud environment) to detect any integrity violation
(often introduced by malware infections) in kernel modules.

We evaluated ModChecker with techniques often used by
common rootkits to alter kernel module’s headers and exe-
cutable contents by injecting DLLs and explicitly modifying
header values. The results showed that ModChecker detected
any such infection in kernel modules that pertained to the
alteration of headers and executable code.
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Fig. 9. Inside virtual machine - CPU and memory impact of ModChecker.
Box represents the time span when the virtual machine’s memory was being
accessed by ModChecker. (The boxes are zoomed-in in the small graphs.)

We also evaluated the best and worst runtime cases of
ModChecker when VMs were idle and when they were heavily
loaded. In the best case, ModChecker showed steady linear
growth of runtime. This is because the current version of
ModChecker sequentially accesses virtual machines. However,
in the worst case, the growth was nonlinear after the heavily
loaded VMs exceeded the number of virtual cores.

We measured the impact of ModChecker on system re-
sources inside the virtual machines. The machines were kept
idle to ensure that only ModChecker induced perturbation was
observed. We found no considerable impact of ModChecker
on the system resources.

ModChecker runs outside the virtual machines using VMI
that makes it difficult for malware residing inside the virtual
machine to compromise. In the worst case, when malware
infection spreads to the majority of the virtual machines in
the cloud, ModChecker is still be able to detect discrepancies
among kernel modules across virtual machines. Therefore, we

conclude our approach is most effective in conducting initial
light-weight consistency checks. Upon detecting module’s in-
consistent state a more comprehensive, but also more resource
intensive, analysis tool can be used to trace the malware
infection that has been flagged by the ModChecker.
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