
Benchmarking Data Replication Performance for The Defense Integrated Military
Human Resources System

Venkata Mahadevan, Mahdi Abdelguerfi, Shengru Tu, Golden Richard
Department of Computer Science

University of New Orleans
New Orleans, LA 70148

Abstract

The Defense Integrated Military Human Resources
System (DIMHRS) is an initiative by the Department of
Defense (DoD) to develop a web-based personnel and
pay management system. The participant subsystems of
DIMHRS and its intended users are highly
geographically distributed throughout all regions of the
world. This varied distribution of subsystems and users
over vast distances requires some mechanism to ensure
that services are delivered to users with reasonable
performance and reliability. The deployment of data
replication in DIMHRS is intended to provide users with
fast, reliable access to data regardless of their location.
Several different data replication schemes can be
applied to achieving this goal. The purpose of our
research is to define a set of benchmarks that measure
various aspects of data replication performance and
evaluate the effectiveness of particular data replication
schemes under simulated test environments designed to
match expected real-world DIMHRS usage. We
conclude with a recommendation on the data replication
scheme(s) that we feel best serve the aforementioned
goals.

1. Introduction

Data replication technology makes it possible to
provide users with rapid, dependable access to data
regardless of their location on the globe. This makes it
especially attractive for deployment in large distributed
information systems where high availability and reliable
access to data is critical. The Defense Integrated Military
Human Resources System (DIMHRS) is such a system.
It is an initiative by the Department of Defense (DoD) to
develop a web-based personnel and pay management
system that will be used by all branches of the military.
The participant subsystems of DIMHRS and its intended

users are highly geographically distributed throughout all
regions of the world. This varied distribution of
subsystems and users over vast distances requires some
mechanism, namely data replication, to ensure that
services are delivered to users with reasonable
performance and reliability. Several different data
replication schemes can be applied towards achieving
this goal and various Commercial Off The Shelf (COTS)
replication products are available that provide the
necessary functionality. The goal of our research is to
define a set of benchmarks that measure various aspects
of data replication performance and evaluate the
effectiveness of particular data replication schemes under
simulated test environments designed to match expected
real-world DIMHRS usage1.

There are two major kinds of data replication:
primary-site replication and multiple-site replication [1].
Primary-site replication involves the copying of data
from a primary ("master") site to many target sites ("data
stores"). Data is modified only at the primary site. For
applications that require greater flexibility in updating
data, multiple-site replication should be considered. In
multiple-site replication, there can be numerous master
sites that can contain complete sets or subsets of data
which can be accessed and modified at any of the sites.
Modifications to the data are propagated to all the other
sites using synchronous or asynchronous propagation. In
the context of DIMHRS, it is inevitable that multiple-site
replication should be used as there are many scenarios in
the military where it will be necessary to have read/write
access to data subsets. For example, disconnected
operation in mobile units such as submarines should be
possible.

Several mechanisms exist for replicating data across
multiple sites. These are briefly reviewed below:

1 This work was funded in part by Science & Engineering Associates, Inc
(SEA). The views expressed herein are those of the authors and not of
SEA.

Snapshots: These are locally stored copies of table data
from a master site. Snapshots may be read-only
(immutable) or updateable. The primary advantage of
snapshots is that they do not need to contain a complete
set of data from a master site. Snapshots can be
comprised of only certain rows or columns of a table.
For example, consider a table that contains two columns:
the first column is plain text while the second column is
a Binary Large Object (BLOB). To save storage space at
the remote site (which may be a mobile unit with limited
storage capacity), the snapshot at the remote site can be
comprised of only the first column of the table as the
BLOB may have considerable storage requirements. A
snapshot can be refreshed by pulling changes in table
data from the master table that it is associated with. An
updateable snapshot can push changes to its associated
master table.
Synchronous multiple master replication: Multiple
master replication in general entails executing
transactions that modify data across both local and
replicated copies of data. In a synchronous multiple
master replication scheme, local transactions that modify
data marked for replication are not committed until
corresponding replicated copies of that data are updated
first i.e. all replicated copies are updated within the same
transaction. If the number of replicated copies is large,
such a scheme may result in extremely poor performance.
Furthermore, if for some reason a replicated copy cannot
be updated, then none of the copies, including the local
(master) copy, are updated.
Asynchronous multiple master replication: This scheme
attempts to compensate for the deficiencies inherent in
the previous scheme by separating transactions from the
replication process. If a transaction updates a local
replica of a table, the other replicas of that table are not
updated within the same transaction. Instead, the other
replicas of the table are updated when the replicator (data
replication software) is scheduled to perform a refresh at
some preset interval or time. This type of replication
scheme can often provide more effective utilization of
network resources and cause less database contention
than a synchronous replication scheme [2].

As mentioned earlier, the use of data replication
technology in DIMHRS in intended to provide services to
users quickly and reliably. The primary advantages of
replication that are most useful in the framework of
DIMHRS include:
Increased availability of data: This is especially useful
for users who may be occasionally disconnected (e.g.,
mobile users). For example, an application on the mobile
unit can access a local database when a network
connection to a remote database server is not available.
Or, since data is replicated at more than one site, if a site

experiences system failure, an application can still obtain
the data it needs from another site. In the case of
DIMHRS, which is a highly geographically distributed
system, replication can also provide improved
performance to users in different regions of the world by
providing them with access to databases that are closest
to them.
Improved security: An organization can choose to keep
their complete database on a highly secure system while
non-classified data may be replicated to various other
sites. All current replication packages support
partitioning of data -- the ability to select only certain
rows (horizontal) or columns (vertical) from a table to
replicate.
Information transport: Data can be periodically
transported from an OLTP database to an OLAP data
warehouse.
Information off-loading: If the speed of transaction
processing is important, a copy of the database can be
created to handle decision support applications
separately.

Unfortunately, despite the many advantages of
replication aforementioned, there are several issues to
consider before deployment:
Latency: This is the lag introduced between when an
application modifies data on a local database and when
the changes are replicated to the remote replicas. To
ensure that the users of DIMHRS are provided with up-
to-date data on a consistent basis, it is important to
determine how much latency is acceptable for the
applications that support DIMHRS to function
adequately.
Transaction integrity: A single transaction can update
many rows from many tables on a database. The order of
the updates must be maintained by the replicator and the
updates must be performed in that order on all replicas.
This will ensure that transaction integrity is enforced and
updates at the replicas are not rejected because of
referential integrity constraints.
Replication conflicts: In an advanced replication
environment like DIMHRS, several kinds of replication
conflicts can transpire under certain scenarios. For
instance, if two or more different sites attempt to
replicate an update to the same row at the same time,
data inconsistencies could result [3].

The remainder of this paper will focus on the
performance aspects of data replication as they pertain to
the DIMHRS replicated environment and is organized as
follows. In Section 2 we describe the fundamental design
of the DIMHRS replicated environment. Section 3
discusses the tools selected to provide data replication
facilities in our simulated test environments and the
miscellaneous tools chosen for use in the benchmarking

process. In Section 4 we explain the methodology used
to experimentally gauge data replication performance.
An analysis of the results obtained from benchmarking is
provided in Section 5. In Section 6, we conclude with a
recommendation on the data replication schemes that are
most appropriate for use in DIMHRS and suggestions for
future work.

2. Overview of the DIMHRS Replicated
Environment

Figure 1 shows the fundamental design of the
DIMHRS replicated environment. There are 3 clearly
distinguishable layers comprising this replicated
environment. These are:
Data warehouse (OLAP): The central store of all
DIMHRS data. Data from the lower layers is eventually
propagated to this site.
Regional OLTP master sites: There are 4 such sites, one
for each region of the world where DIMHRS usage is
expected to be high. Each site contains data pertaining
to its regional location. No replication of data occurs
between these sites although they are connected together
by a high-speed bus. They are linked to the data
warehouse via high bandwidth network connections
through which replication of data occurs.
Snapshot sites: There are many snapshot sites
containing subsets of data from the regional master sites.
Snapshots are linked to regional master sites via low to
moderate bandwidth network connections. End users
and applications will most likely interact with the system
at this level.

Figure 1. DIMHRS Replicated Environment

Replication software running at every site (snapshot

or regional master) is responsible for the propagation of
changes to replicated data within the environment.

3. Tools Selected for Use in the
Benchmarking Process

In order to construct simulated test environments for
use in benchmarking data replication performance in
DIMHRS, a tool that provided a full suite of data
replication features for a RDBMS was needed. Oracle
Corporation's Oracle8i Enterprise Edition v. 8.1.6 was
selected as the RDMBS for use in our simulations. This
narrowed the options for selecting the replication means
to products that were compatible with it. Oracle8i itself
contains its own trigger-based, bi-directional replication
facilities collectively called Oracle Advanced Replication.
The data replication schemes supported by Oracle
Advanced Replication include: synchronous and
asynchronous immutable and updateable snapshot
replication, synchronous and asynchronous multiple-
master replication, or any combination of the two.
Flexible horizontal and vertical partitioning of data,
guaranteed transaction integrity, automated conflict
detection and resolution routines, and fault tolerance
provided via the Oracle8i RDBMS round out the list of
desirable features. In addition, complete application
independence is possible because all replication is done
at the database level. Other tools that were required are
as follows:
Database access and programming language: SQL is
the standard language for retrieving and modifying
information from a RDBMS. The selection of the API
for interfacing an application with a RDBMS, however,
is directly related to the programming language in which
the application is written. Java was chosen because of its
inclusion of the Java Database Connectivity (JDBC) API,
which makes it easy to rapidly develop and deploy
portable applications.
Network statistics monitor: In any application that
entails transmission of data across a LAN, it is often
useful to collect information about the state of the LAN
such as bandwidth utilization and traffic level (in packets
or bytes). Since it is expected that data replication will
generate measurable network traffic, this information
could be useful in evaluating the kind of network
conditions that data replication operates best under. For
this purpose, LANScan Software's Network Monitor was
used. The most attractive feature of this software is its

capability to measure network bandwidth usage and
traffic across heterogeneous environments.

 Using COTS software products as building blocks
has been a strong trend in businesses and organizations,
as highlighted by the COTS-based systems initiative at
the Carnegie Mellon Software Engineering Institute [5].
The advantages of using COTS are numerous, including
market-tested reliability, market-approved features, and
an opportunity for expanding software capabilities and
improving system performance by the commercial
marketplace [4].

4. Benchmarking Methodology

The first step in the benchmarking process was to
generate test data. A subset of the DIMHRS
Implementation Data Model that will be used in the final
production system was used as the basis for data
generation. The subset consists of 14 tables that contain
information about military personnel. The PER (Person)
table is the central table in this data model. It contains
all the information pertaining to a person such as name,
birth date, and a description field holding some
miscellaneous data about the person. The additional
tables hold data pertaining to a person's military
affiliation such as the organization they belong to, skills
they possess, and their occupation and position. The
PER table is shown in Figure 2.

Due to the fact that the actual DIMHRS database
contains highly confidential information about military
personnel, no actual data could be used for data
generation purposes. Therefore, the entire database had
to be comprised of dummy data. Data for each field in
every table of the data model had to be composed of
random letters and numbers (depending on the field
type). For this purpose, a Java application was developed
to interface with the database via JDBC and
automatically generate 500,000 random personnel
records. The test database size was approximately 1 GB.

Figure 2. The PER (Person) Table

3 different test environments were constructed to

simulate real world DIMHRS usage. These are as
follows:
Environment 1: This environment is intended to
simulate a single link between a regional master site and
data warehouse. Refer to Figure 1 to notice where this
environment fits into the larger DIMHRS Replicated
Environment framework. The regional master site (local
test database) was set up on a Pentium III, 450Mhz PC
with 128MB RAM and an adjustable 2Mbps wireless
Ethernet card. The Data Warehouse (replicated remote
database) was set up on a Pentium III, 800Mhz PC with
256MB RAM and a 10Mbps Ethernet connection. The
local test database accepts updates from an application.
The replication software running at both sites then
propagates the changes to the replicated remote database.
The way that changes are propagated depends on the
replication scheme configured in the replication software.
Environment 2: This environment is similar to the first
one, but the speed of the network connectivity between
the two sites is vastly reduced. Since the primary goal of
this environment is to evaluate various replication
schemes under low to moderate speed network
connections, infrared devices (IRDA) that allow for
various low to moderate bandwidth connections to be
simulated were used as the network medium instead of
the high speed wireless and wired Ethernet connections
used in environment 1. An updateable snapshot site
(local test database) was set up on a Pentium III, 450Mhz
PC with 128MB RAM and an adjustable IRDA link. A
regional master site (replicated remote database) was set
up on a Pentium II, 450Mhz PC with 256MB RAM and
an adjustable IRDA link. TCP/IP runs on top IRDA to
provide reliable networking. As in the first environment,
the local test database accepts updates from an
application and the replication software running at both
sites then propagates the changes to the replicated remote
database. In the context of the greater DIMHRS
Replicated Environment framework, this environment
sits between the bottom and middle layers.
Environment 3: This environment is intended to
simulate DIMHRS usage under a production quality
scenario. 3 SUN SparcServer20 machines (256MB
RAM, 10Mbps Ethernet) each represent a regional
master site and a Sun Enterprise 420R (4GB RAM,
10Mbps Ethernet) machine represents the data
warehouse. In the context of the greater DIMHRS
Replicated Environment framework, this environment is
intended to simulate the top 2 layers. There are,
however, 2 important differences. There is a

PER_Id: NUMBER

PER_Last_Nm:
VARCHAR2(50)
PER_Frst_Nm:
VARCHAR2(50)
PER_Mid_Nm:
VARCHAR2(20)
PER_Birth_Clndr_Dt: DATE
SEX_CAT_Cd: VARCHAR2(1)
PER_Ethnic_Affnty_Cd: VARCHAR2(1)
PER_Adult_Dpndnt_Qy: INTEGER
PER_Mnr_Dpndnt_Qy: INTEGER
PER_Total_Dpndnt_Qy: INTEGER
PER_Dscrptn_Text:

bidirectional link between the data warehouse and each
of the regional master sites and the data warehouse is not
restricted to being a non-updateable snapshot. The
reason for this is that in our benchmarking process, it
would be beneficial to be able to actually update data at
the data warehouse and have it replicated to the other
sites. Therefore, instead of just benchmarking data
replication performance in one direction (from the
regional master sites to the data warehouse), it would be
possible to also measure data replication performance in
the opposite direction i.e. from the data warehouse to the
regional master sites.

The 2 most important factors in measuring overall
data replication performance in DIMHRS were
determined to be replication latency and the number of
transactions that have been propagated from a local
database to its remote replica(s) per unit time. It is fairly
straightforward to understand why knowing the
replication latency of a particular data replication scheme
under different test environments is crucial in
determining the overall performance of a replicated
environment. If the replication latency is too large,
updates to replicated data will not be propagated to
remote replicas in a timely fashion and any users
retrieving data from these remote replicas may be
presented with stale data. For certain applications and
users this may not be such a dilemma, but for mission
critical applications that require the latest updates in near
real-time, keeping the replication latency within certain
parameters is necessary. Counting the number of
transactions that have been propagated per unit time in a
particular replication scheme under different test
environments is useful in ascertaining the efficiency of
the scheme, environment, and the replication software
itself. For instance, if there is heavy transaction activity
at a local database and the remote replicas need to be
updated in near real-time, a replication scheme that
propagates the transactions as fast as possible would
satisfy this scenario better than a scheme that can
propagate fewer transactions per unit time. Of course,
other conditions such as system hardware and network
bandwidth availability also play a role in contributing to
the overall number of transactions propagated.

In addition to collecting the above statistics, the
network bandwidth utilization percentage and total
number of bytes transferred across the network during
replication activity were recorded. LANScan Network
Monitor was used to analyze the data flowing over the
network and to isolate the traffic flowing between
machines involved in replicating data. Network
bandwidth utilization and the amount of data transferred
were therefore accurately logged to reflect only the traffic
generated by the data replication process.

A collection of benchmarking tools was developed to
measure the statistics aforementioned. These tools are
the transaction generator and the latency calculator.
Transaction generator: The purpose of the transaction
generator is to apply SQL updates to data stored in tables
on a local database. In this case, the local database
contains the schema and data created by the data
generation process described earlier. The motivation
behind the transaction generator is to simulate a user or
users updating their local database in DIMHRS. As the
transactions are applied to the local test database, the
Oracle Advanced Replication software propagates the
updates to the remote replica sites.
Latency calculator: The purpose of the latency
calculator is to measure the replication latency (in
milliseconds) at a remote replica site. It does this by
detecting changes in the rows of replicated tables at the
site. As transactions are propagated to the remote replica
site from another database by the replication software,
the latency calculator detects if each row of a table has
been updated (due to the propagation of changes) from its
original value and calculates the replication latency of
the update to the row.

The transaction generator and latency calculator
must interact with each other to ensure the accuracy of

the results. Figure 3 presents this process.

Figure 3. Interaction between the
Transaction Generator and Latency Calculator

Under each of the 3 test environments, several

replication schemes were employed and their
performance benchmarked. For all of the experiments
conducted, the SQL that comprises a transaction
generated by the transaction generator was:

1. UPDATE PER
2. SET PER_Dscrptn_Text = ?
3. WHERE PER_ID = ?

The SQL statement shown above will cause a
transaction to update the description field of the person
table for a specified personnel identification number.
The reasons that this particular definition for a
transaction was used are because it is expected that the
PER table will be one of the most updated and frequently
used tables in real-world DIMHRS usage and the
PER_Dscrptn_Text field is the largest field in the PER
table. Updates to this field will generally consist of
several hundred ASCII characters. The substantial
amount of data contained in this field is beneficial when
measuring the amount of traffic flowing over the
network.

5. Results

Table 1 summarizes the results obtained from
benchmarking under test environment 1. The Windows
2000 Professional OS was used in all of the benchmarks
conducted in this environment.

It can be seen that the snapshot replication schemes
are vastly more efficient than the multiple master
schemes. Both asynchronous and synchronous snapshot
schemes performed, on average, several orders of
magnitude faster than either of the multiple master
schemes. More interesting, however, is the fact that the
asynchronous multiple master scheme was nearly twice
as efficient as the same synchronous scheme.

Table 1. Summary of Benchmarking Results for

Test Environment 1

Replication
Scheme

Avg. No. of
Transaction

s per
minute

Avg.
Replication

Latency

Total Bytes
Transferred

Avg.
Bandwidth

Utilization

Asynchronou
s Snapshot

8874 < 20ms 38.8MB 3.71%

Synchronous
Snapshot

8804 < 20ms 38.0MB 3.22%

Asynchronou
s Multiple

master

3299 < 20ms 24.3MB 3.96%

Synchronous
Multiple
master

1360 < 20ms 10.2MB 1.75%

Table 2 summarizes the results obtained from

benchmarking under test environment 2. The Windows
2000 Professional OS was used in all of the benchmarks
conducted in this environment.

Table 2. Summary of Benchmarking Results for

Test Environment 2

Bandwidth Tested Avg. No. of
Transactions per minute

Avg. Replication
Latency

9,600bps 60 213.5ms

19,200bps 60 183ms

38,400bps 60 174ms

57,500bps 60 154.5ms

115,200bps 60 90ms

In this environment, the paucity of adequate network

bandwidth made it impossible to allow the transaction
generator to generate transactions as quickly as possible.
This is because the time required to propagate a large
number of transactions was prohibitive, even at
115,200bps. Due to the lack of bandwidth, transactions
are stored in a deferred queue of transactions to be
propagated. To avoid this, the transaction generator was
set to generate approximately 60 transactions per minute.
However, even at this low level of activity, the replication
latency was still quite large. Unfortunately, the amount
of data transferred and bandwidth utilization could not be
obtained in this environment because the infrared devices
used to simulate these bandwidths could not be
monitored using LANScan Network Monitor. Strictly
speaking, they are not really network devices as TCP/IP
runs on top of the IRDA protocol.

Table 3 summarizes the results obtained from
benchmarking under test environment 3. The Solaris 7
OS was used in all of the benchmarks conducted in this
environment.

The importance of these results is in elucidating the
fact that the choice of hardware (along with network
bandwidth and the data replication scheme) plays a vital
role in overall data replication performance. The
enormity of the difference in the number of transactions
propagated by the Sun Enterprise 420R versus a Sun
SparcServer20 is testament to this fact. As expected, the
average replication latency remains less than 20ms due to
the presence of a high speed, high bandwidth network.

 Table 3. Summary of Benchmarking Results

for Test Environment 3

Hardware Transaction
Generator executes
on / Replication

Scheme

Avg. No. of
Transactions
per minute

Avg.
Replication
Latency

Total Bytes
Transferred

Avg.
Bandwidth
Utilization

Enterprise 420R
Asynchronous
Multi-master

4558 < 20ms 30.1MB 2.23%

Enterprise 420R
Synchronous
Multi-master

3538 < 20ms 26.3MB 2.10%

SparcServer 20
Asynchronous
Multi-master

2226 < 20ms 14.1MB 2.03%

SparcServer 20
Synchronous
Multi-master

1203 < 20ms 9.8MB 1.91%

6. Conclusions

The benchmarking of data replication performance
for the DIMHRS Project was discussed in this paper.
Some benchmarks were defined to quantify data
replication performance and the benchmarking of several
data replication schemes under simulated test

environments was carried out. Analysis of the results
advocate that the DIMHRS replicated environment
should only use asynchronous replication schemes as they
provided better performance than their synchronous
counterparts in every test environment. The choice of
hardware and bandwidth availability also makes a big
difference in overall replication performance. Mobile
users should have at least 19,200bps of bandwidth for
satisfactory performance. Fully-replicated master servers
should have at least 10Mbps of bandwidth and massive
I/O capacity to adequately deal with the propagation of
updates to replicated data. There is a great deal of work
that can be done in addition to that presented in this
paper. Replication software from vendors other than
Oracle could be used in the benchmarking process. Or,
hybrid test environments that combine large numbers of
snapshots with several fully-replicated servers could be
benchmarked. Designing and constructing such
environments would pose a unique challenge because of
their inherent complexity.

References

[1] B. Burton, The Real Value of Data Replication, Gartner
Group, 1996

[2] International Business Machines Corporation, IBM DB2
Replication Guide and Reference (1st ed.), International
Business Machines Corporation, 1999

[3] Oracle Corporation, Oracle8 Server Concepts Release 8,
Oracle Corporation, 1997

[4] Lisa Brownsword, Forward, J. Dean, A. Gravel (Eds.),
COTS-Based Software Systems, Proceedings of the First
International Conference on COTS-Based Software Systems,
2002.

[5] Carnegie Mellon Software Engineering Institute, COTS-
based systems initiative, http://www.sei.cmu.edu/cbs

