Chapter 1

CLASSPRINTS: CLASS-AWARE SIMILARITY
HASHES

Hash-based Classification of Data

Vassil Roussev, Golden G. Richard II1, and Lodovico Marziale

Department of Computer Science, University of New Orleans
New Orleans, Louisiana 70148, USA

vassil,golden,vico@cs.uno.edu

Abstract In this paper, we introduce the notion of class-aware similarity hashes,
or classprints which is an outgrowth of recent work on similarity hash-
ing. Specifically, we build on the notion of context-based hashing to de-
sign a framework both for identifying data type based on content, and
for building characteristic similarity hashes for individual data items
that can be used for correlation.

The most important feature of the presented work is that the process
can be fully automated and no prior knowledge of the underlying data
is necessary, beyond the selection of a training set of objects. The
approach relies entirely on these representative sets to characterize a
particular data type. We present an empirical study which demonstrates
the practicality of this work on real data and sketch out a complete
implementation.

Keywords: Digital forensics, similarity hashing, classprints, class-aware similarity
hashing

1. Introduction

The problem of identifying the type of data inside a container, such as
a file or disk image, has been studied since the very beginning of digital
forensics, yet very few positive results have been published. The abil-
ity to identify the underlying type of the data without the help of the
file system metadata comes in very handy in data recovery (file carving)
operations to either validate or invalidate the currently attempted recov-

2

ery. For example, if a tool is trying to carve out a JPEG file and runs
into plain text data, it is clear that the process is not on the right track.
Data carving is routinely applied to target images to recover (fragments
of) deleted data and is often a critical source of information.

Another related line of research that is automated data correlation.
With the exponential capacity growth, targets can easily encompass mul-
tiple terabytes of data so the ability to quickly separate the potentially
relevant from the clearly irrelevant information will have a great impact
on the length and accuracy of a forensic inquiry. One of the most pow-
erful tools in that regard is the ability to use prior accumulated dat to
make that separation. In traditional (physical) forensics this includes a
large and sophisticated set of different databases that can help an in-
vestigator quickly zero in on the relevant. Unfortunately, in the digital
world, we are well behind the curve of what is needed. Currently, the
only success story is the use of sets of file hashes of known system and
application files, such as the ones maintained by NIST [6] and commer-
cial vendors. Yet those hashes are a drop in the bucket and it is unclear
how long this approach can be extended into the future as more and
more hashes are added—are we going to need compute clusters just to do
hash searches?

Traditional, file-based (cryptographic) hashes have their place but are
also a very fragile tool-they must know the ezact binary representation
of all versions of the objects of interest. Recently, a few schemes have
been proposed that approach the issue of finding similarity among ob-
jects. In [5], Kornblum proposed a context-based approach to dynam-
ically split up the file into individually hashable chunks from which a
composite hash is produced. While the use of hash-based context (which
can be traced back to early work in information retrieval such as [1] and
[3], and is ultimately derived from Rabin’s original work [8]) is a proven
idea, the rest of the scheme lacks robustness. At the same time, we pro-
posed a significantly more robust approach based on Bloom filters [2],
[4] but lacked an elegant mechanism to split up arbitrary targets.

In [10] we combined those two ideas with a sizeable body of experi-
mental results and came up with the idea of Multi- Resolution Similarity
(MRS) hashing that can be applied to arbitrary targets. Indeed the re-
sults allowed us to quite clearly relate data files that would be classified
by a human as related, such as different drafts of the same document.
Also, we were able to identify the presence of the content of a file (e.g. a
JPEG) inside a larger target (raw drive image) without any knowledge
or assistance from the file system.

The latter property, in addition to making the tool generic, also carries
significant performance advantages stemming from the fact that a single

Roussev, Richard & Marziale 3

sequential pass over the image is required. In contrast, any file-based
tool requires access to file metadata, which results in a non-sequential
disk access pattern. Figure 1 illustrates the effects of non-sequential
access on the throughput of a modern hard drive, as measured by Intel’s
IOMeter tool (iometer.org). As little 2% randomness in the work load
can cost 30% in performance penalty while 5% can cut performance in
half. Currently, forensic tool design appears oblivious to this issue.

80
70
70 68 68
60 -
5 | 48
MB/s 40 1— 36
30 1 24
20 A
10 - ! 4
0 [l ==
& & & & & & & &
X N & & & & & IS
& W ¥ ¥ ¥ ¥ ¥ &
& Q/Q @0\ @0\ @Q @0\ @Q QIQ
O S S A
Q° o N o 9 Q Q
RS » & Y S

Figure 1. Observed HDD throughput for WDC WD5000KS (500G B)

With capacity growth outpacing both bandwidth and latency im-
provements [7], forensic target are, in fact getting bigger relative our
capacity to process them on time. Therefore, building performance-
consious tools should be a priority for researchers in the field.

The rest of the paper is laid out as follows. First, we briefly review
the similarity hashing techniques relevent to this work. Next, we outline
the ideas and approaches designed to extend it. Finally, we present some
experimental results in support of our conjectures, and summarize the
results.

2. Background—-Similarity Hashing

In this section we briefly summarize our recent work on similarity
hashing; for a more in-depth discussion, please refer to [10].

Block hashing. The most basic scheme that can be used for determin-
ing similarity of binary data is block-based hashing. In short, crypto
hashes are generated and stored for every block of a chosen fixed size
(e.g. 512 bytes). Later, the block-level hashes from two different sources

4

can be compared and, by counting the number of blocks in common, a
measure of similarity can be determined. The main advantage of this
scheme is that it is already supported by existing hashing tools and it is
computationally efficient the hash computation is faster than disk I/0O.

The disadvantages become fairly obvious when block-level hashing is
applied to discover file similarity. Success heavily depends on the phys-
ical layout of the files being very similar. For example if we search for
versions of a given text document, a simple character insertion/deletion
towards the beginning of the file could render all block hashes differ-
ent. Similarly, block-based hashes will not tell us if an object, such as
a JPEG image, is embedded in a compound document, such as an MS
Word document. In short, the scheme is too fragile and a negative result
does not reveal any information.

Context-triggered piecewise (CTP) hashing. In [5], Kornblum pro-
posed an approach that overcomes some of the limitations of block-based
hashes and presents an implementation called ssdeep. The basic idea is
to identify content markers, called contexts, within a (binary data) ob-
ject and to store the sequence of hashes for each of the pieces (or chunks)
in between contexts (Figure 2). In other words, the boundaries of the
chunk hashes are not determined by an arbitrary fixed block size but are
based on the content of the object. The hash of the object is simply a
concatenation of the individual chunk hashes. Thus, if a new version of
the object is created by localized insertions and deletions, some of the
original chunk hashes will be modified, reordered, or deleted but enough
will remain in the new composite hash to identify the similarity.

context chunks

Ao FLT e Tl

Hash = h(c,)h(c,) ...h(c,)

Figure 2. Context-based hashing (a.k.a. shingling)

To identify a context, ssdeep uses a rolling hash over a window of
¢ = 7 bytes, which slides over the target. If the lowest ¢ bits of the
hash (the trigger) are all equal to one, a context is detected, the hash
computation of the preceding chunk is completed, and a new chunk hash
is started. The exact value of ¢ depends on the size of the target as the
tool generates a fixed-size result. Intuitively, a bigger ¢ produces less
frequent context matches and reduces the granularity of the hash.

Roussev, Richard & Marziale 5

Bloom filter similarity hashing. In [9], we developed a scheme, which
utilizes Bloom filters to derive object similarity. The basic idea is to use
the (known) structure of an object to break it into components which
are individually hashed and placed into a (Bloom) filter. Using the
mathematical properties of filters, we demonstrated both analytically
and empirically that the bitwise comparison of filters can yield a very
useful measure of the similarity between the binary representations of
two (or more) objects.

In [10] we further developed this idea by combining it with context-
based object decomposition (or shingling in the terminology of [3] to
handle arbitrary binary data. We also devised a standardized multi-
resolution scheme which allows: a) objects of arbitrary sizes to be hashed
without loss of resolution; b) objects of various size to be effectively
compared, for example, it is practical to search for (the remnants of) a
1MB file inside a target that is over 100GB.

Another important property is that, due to the use of Bloom filters as
a basic builing block, the resulting hashes are extemely memory efficient—
they require no more than 0.5% of the size of the target. Thus, the
complete multi-resolution hash of a 500GB hard drive can fit in the
main memory of a modern workstation.

Performance-wise, the MRS hash generation scheme is no more ex-
pensive than a block-based MD5 hash, even in its early (unoptimized)
version. The comparison step is very efficient and can be sped up by us-
ing lower resolution for large targets and/or delegating it to the graphics
processor which, in our experience, can speed up the process 20 times
on an NVidia G80 processor.

3. Class-aware Similarity Hashing

As discussed in the preceding section, MRS hashes are a very sensi-
tive and tunable tool in terms of finding similarities among binary data
objects. However, what is not clear so far is why are the objects similar?
From our previous work, it appears that for user-generated artifacts (e.g.
jpg, doc, pdf files) the existing MRS scheme works reasonably well in
that the identified similar objects stand out from the rest of the objects
of the same class.

However, this is not the case for other classes of objects such as app-
plications and system libraries. When applied in its original form, MRS
hashing finds too many applications/libraries to be similar, which limits
its usefulness. We should note that these are not false positives—the bi-
nary representations of these objects are indeed similar. The observed
syntactix similarities are generally artifacts of the particular file for-

6

mat (common headers, etc.), the compiler used, and statically-linked
libraries. For example, in some early experiments, we identified (much
to our surprise) that most of the libraries we sampled had repetitive
functions. In other words, the ezxact same function code was present
multiple times. These functions tend to be small and are likely com-
piler artifacts. Nonetheless, they increase the binary similarity but are
not necessarily indicative of higher semantic similarity of the compared
objects, which is the typical goal of an investigation.

Thus, the main question we focus on in this work is: Is it possible
to effectively separate the class-common features (hashes) of an object
from its characteristic individual features? Solving this problem would
allows us to define an object class (e.g. MS Word documents) as a set
of (context-based) hashes that are commonly found in such objects. A
positive outcome has at least three forensically-importnant applications:

= We can enhance the data recovery process by helping to eliminate
at least some of the false positive results that currently plague
virtually all file carving tools in existence.

m We can enhance the similarity hashing scheme by splitting up the
class-common from the object-specific hashes, which would yield
more focused similarity results.

m We can search an unstructured target to estimate the number of
objects of different types without resorting to reading the file sys-
tem. This is a significant advantage as we can obtain the informa-
tion after a single sequential pass over the target (partial results
could, of course, be presented while the operation is under way).
This could help in the triage process when faced with a large vol-
ume of data.

Quite apart from aiding in regular investigatations, the latter two ap-
plication could help in some tricky legal situations where search and
seizure must be balanced against privacy concerns. While the judicial
system has not yet directly addressed the bounds of what is a reasonable
search in the digital world, the above capabilities could provide cause for
search, e.g., the disk contains file that is similar to something relevant,
or the drive contains a large number of pictures. Conversely, it could
help rule out unlikely candidates.

The main thrust of this paper is to validate the concept of class-
aware similarity hashing. In other words, we must verify the existence
of class-specific features that can be captured through hashing, quantify
the number and coverage of these features, and cross-validate them by
comparing them with other classes.

Roussev, Richard & Marziale 7

4. Empirical Study

The actual experiments are based on a custom tool, which utilizes a
counting Bloom filter with a single hash function. (This is equivalent to
a hash table which stores as values the number of data chunks that hash
to the particular hash key.) The procedure is a variant on the original
MRS hashing scheme.

For each file, given parameters ¢ and t:

s Hash a sliding window of size ¢ with the djb2 hash function.

s If the £ rightmost bits are all set to 1, declare a new context match
and mdb-hash the data chunk between the previous context and
the current one and place it in the counting Bloom filter; advance
the window by the minimum chunk size (2!°2) and go back to
djb2-hashing;

m Otherwise, slide the window by one position and go back to djb2-
hashing.

To avoid the potential problem of a single file contributing the same
hash multiple times (a real issue with low-entropy data), we create a
local filter for each file and limit the number of contributions to one per
key and then add them to the total in the master table. (This is not a
problem with the actual MRS hash because it does not use a counting
filter.)

After this step, we build a histogram which, for a given number £,
gives us the number of filter locations that have a count of &k (that is, k
files contain that hash). Based on the histogram, we can define a notion
of coverage for threshold r the number of files that contain a hash that
has a count of at least r in the master table. Intuitively, we would
like to obtain maximum coverage with the fewest number of features,
so we start with the highest frequency and go down in order. It is not
difficult to see that this approach does not guarantee minimal (in the
number of hashes) coverage but it works fairly well in practice. We also
define relative coverage as the fraction of objects covered by hashes with
count of at least . The size of the coverage is the number of hashes
participating in the coverage.

4.1 Reference File Sets

Below are brief descriptions of the file sets we used in the experiments,
along with their corresponding mneumonic abbreviation used in the re-
sult presentation. Note that the first three ones were also used in our

8

previous work [10] and were obtained at random from the Internet. The
rest are standard sets of system files, as described.

m doc The sample contained 355 files varying in size from 64KB to
10MB for a total of 298MB of data.

m zls 415 files, 64KB to TMB, 257TMB total.
m jpg 737 files, 64KB to 5MB, 121MB total.

m win-dll 1,243 files from a fully-patched WindowsXP’s system32
directory ranging between 3KB and 640KB, 141MB total.

m win-exe 343 files from the WindowsXP’s system32 directory be-
tween 1KB and 17MB, 46MB total.

m cyg-bin 1,272 files from the bin directory of Cygwin 2.4 (this in-
cludes all executable files); sizes: 3KB-7.6MB, 192MB total.

» ubu-bin 445 files from the /usr/bin directory of a fully-patched
Ubuntu 6.06, 16KB-3.85MB, 63MB total.

4.2 First Order Analysis: File Set Features

Our first order of business is to establish our hypothesis that data
from different file type does indeed exhibit common features that can be
captured via context-based hashing. A feature in this context is a hash
that is common to a set of data objects of a specific class. The coverage
of this feature comprises of all the objects that contain that feature at
least once. Ideally, we would like to see a relatively small set of features
cover as much as possible of the reference set.

As a simple sanity check, we ran our code first against a set of 600
files (256 KB each) of random data. The results showed that only two
features were common to five different files, with all the rest common to
no more than two files. This is precisely what we expected—random data
should not exhibit any features. By extension, high-entropy data ob-
jects (compressed and/or encypted) cannot be analyzed in this manner.
Figure 3 summarizes our findings with respect to three common types of
user-created data: MS Word documents (doc), MS Excel spreadsheets
(xIs), and JPEG images (jpg). For each type, the first column gives the
number of hashes in the cover, the second provides the relative cover-
age (percent of the file set covered), and the third gives the absolute
number of files covered. Thus, the row {5, 91, 335} means that the top
5 (Pmost popular’) hashes cover 335 files, which constitutes 91% of the
total number of files in the reference set. Note that, both in this figure

Roussev, Richard & Marziale 9

doc xls ipg

Hashes| Cov % | Cover |Hashes| Cov % | Cover |Hashes| Cov % | Cover

1 52 188 1 59 245 1 28 212

2 54 195 3 83 345 4 52 388

3 59 212 4 92 382 5 54 400

4 91 325 5 94 394 10 59 439

5 91 325 6 97 403 38 72 536

6 93 331 7 97 406 42 75 557

8 93 333 23 100 415 65 78 579

9 93 333 81 79 585

10 94 334 90 81 604

12 97 346 122 85 629

15 97 347 405 88 653

20 99 352 3857 98 729
774 100 355

Figure 3. First-order analysis of user data

and the next, a good number of intermediate rows have been deleted
to reduce space requirements. We have picked points that represent the
overall trends. We should also mention that all hashes are generated as
described in the Similarity Hashing section with parameters ¢ = 8 and
t=05.

It is quite clear that for doc and zls files there are compact and easily
identifiable feature hash sets, or classprints that represent the types. In
the case of doc files, we only need 20 feature hashes to provide 99% cov-
erage. Tt is notable that the top four give 91% coverage so choosing the
cut-off point can be somewhat subjective. (The rows in bold represent
the coverages we have chosen for the cross analysis in the next section.)
For jpg files things are a bit more problematic as we need substantially
larger feature set to cover the reference files. Intuitively, the larger the
feature set the more instance-specific the features it includes. In all
cases, we have tried to keep the feature set relatively small and we chose
the inflection point where the rate at which we need to add features is
greater than the rate at which we increase coverage. For example, in the
jpg case, the jump from 10 to 38 hashes, yields an increase in coverage
from 59 to 72%; the next step, from 38 to 42 is relatively small and
yields a correspondingly modest improvement from 72 to 75%. How-
ever, the following increase from 42 to 65 only yields an improvement
of 75 to 78%, therefore, the 42 was chosen as the cut off point for the
experiments in the next section.

10

win-dll win-exe cyg-bin ubu-bin
Hashes| Cov %| Cover |Hashes| Cov % | Cover |Hashes| Cov %| Cover |Hashes| Cov % | Cover

1 Ml 510 1 441 151 1 1l 146 1 53| 239
2 58] 733 3 46| 158 2 2| 285 2 64| 285
4 68] 853 4 771 265 36 30| 384 3 78] 351
9 71| 886 5 8 2671 49 36 458 4 82| 365
17 75 933 6 79 27 0] 4| 529 6 84| 377
43 80] 1004 7 80| 273 105 49| 624 9 85| 379

122 85 1061 8 86| 295 144 55| 706 33 9| 407

541 90] 1120 11 87 296 276 61 778 50 91 409
2478 95 1193 12 89] 305 654 67) 853 1100 92| 412
5390 971 1215 56 90 306] 1947 72 921 3208 9 416
14208 98] 1228 139 91] 310) 3332 75 958] 5820 931 417
36716 99 1237 332 9| 324] 7013 80 1022] 6648 %l 49
453 95 325] 16913 86 1096 9192 9| 424
987 9| 329) 29985 89] 1138] 42238 971 435
9873 98] 334] 65119 93] 1190

Figure 4. First-order analysis of system executables

The analysis of the system executables (Figure 4) shows some in-
teresting results. The sets were chosen so they had various degrees of
commonality. First, all of them represent primarily executable code for
the Intel x86 architecture. Although other resources could be bundled
into an executable, these are relatively small system utilities that are
unlikely to contain much beyond code. Next, the win-dll, win-eze, and
cyg-bin all represent code for MS Windows. Finally, the cyg-win files are
a Windows port of the same utilities under Unix/Linux, as represented
by the ubu-bin set, and are compiled with the same compiler—gcc.

The main observation is that it is very easy to identify the inflection
points for the win-dll, win-exe, and ubu-bin sets but not the cyg-bin
one. Part of the reason could be that it contains more files than two of
the other sets, however, win-dll has about the same number of files and
exhibits no such issues. The reference cover we picked has substantially
more hashes than for any of the other sets (654) yet the coverage is
substantially lower—only 2/3 of the reference set.

In summary, the observed data shows that it is, indeed, possible to
define a class-common feature set based on similarity hashes. The next
important question is to establish whether this features are class-defining
in that they are generally not present among the features of other classes.

Roussev, Richard & Marziale 11

4.3 Second Order Analysis: Cross-Set
Correlation

It is quite clear that if the class-common features discovered are shared
by multiple classes, their analytical value will be significantly diminished.
Among the chosen sets, there are reasons to believe that, at least some of
these set, share features. For completeness, we compared all 21 possible

doc xls ipg win-dll win-exe cyg-bin ubu-bin
doc 3 (17%)
xls 3 (43%)
jpg
win-dll 9 (21%) | 1(2%)
win-exe 9 (75%)
cyg-bin 1 (0.2%) 1 (0.2%)
ubu-bin 1 (3%)

Figure 5. Feature set intersection

(unordered) pairs of feature sets and calculated their intersection both
in relative and in absolute terms. The results are presented on Figure
5 with only the non-zero elements shown. The table is symmetrical in
terms of the absolute numbers, however, in parenthesis we have put the
intersection as a fraction of the total number of features for the row set.
For example, the zls and doc sets have 3 features in common, which
represents 43% of all features for the zls files and 17% of the features
for the doc files.

It is clear that the {doc, zls} and {win-dll, win-exe} set pairs cannot
be considered independent, which is hardly an unexpected result. Yet,
even a feature from the intersection can be a useful hint as to the content
of a target as it helps eliminate a large number of other possibilities.

4.4 Example Use: Estimating Drive Content

After completing the above analysis we decided to apply the collected
doc feature set to a 7.2GB Windows partition residing on the personal
laptop of one of the authors. The basic idea is to look back at the
reference set and calculate how many features (on average) each of the
files mathes. Then, using the number of matches against the unknown
target we can roughly estimate the number of doc files present.

As it turns out, the original reference set was not ideal for this purpose—
it contained a number of files that had a very high number of feature
matches with the 'top’ file containing 547 feature set matches. Upon

12

closer review, the file contained a huge amount of repetitive informa-
tion. Evidently, a more systematic approach to selecting reference sets
would be helpful in avoiding such pathological cases.

Nonetheless, we took the median of 9 feature matches per file and
applied to the target Windows partition which had yielded 298 feature
matches. Thus, our best guess would be that there are approximately
298/9 = 33 MS Word documents on the partition. The actual count
was 68 so our estimate was off by a factor of two. While more work is
needed to improve and empirically validate this approach, we see some
potential here.

It is also notable that, implicitly, we applied the features from our
training set to a completely unknown and unrelated target, which is
further evidence that the identified features are generic class features.

Another interesting detail is the throughput of the operation. The
single-threaded, unoptimized version of the code was able to perform
the search in 2:44min, or at the rate of 46MB/s. This is significant
because the code is readily paralellizable so 2-4 threads on a dual- or
quad-core processor should be quite capable of keeping up with the sus-
tained 80-100MB/s tranfer rate of current generation of large-capacity
HDD. In other words, this kind of information could be obtained, for
example, during the initial cloning of a target without incurring any la-
tency overhead. Further, the operation is hash-generation constrained
so estimates for multiple types of data could easily be performed in a
single run with virtually no effect on performance.

5. Conclusions

In this paper we motivated and justified the introduction of an en-
hanced similarity hashing scheme called class-aware similarity hashing.
We established empirically that, for several classes of commonly-used
file types, it is possible to automatically extract class-defining feature
sets using context-based hash generation. In other words, we showed
that it is practical to define common file types based solely on syntactic
features of their binary representation. The proposed approach has the
following properties:

m Genericity and Scalability. The approach can be applied to any
data sets of practical size and arbitrary type. By relying solely
on the binary object representation without any knowledge of the
object’s structure we can apply the scheme to, for example, case-
specific data that is not supported by standard tools.

m Automation. The scheme allows complete automation—all it needs
is reference groups of files representing the different user-defined

Roussev, Richard & Marziale 13

types. After the training is completed, the derived feature sets can
be automatically to the raw data that needs to be classified.

m Fase of Use. The tool does not require any specific qualifications
from the user and needs no deep understanding of the underlying
methods to obtain and interpret the results.

m Space Efficiency. Our experiments show that the typical feature
set consists of a few dozen features. Using Bloom filters, it could
be represented in 256 bytes and have false positive rates of less
than 1 in 10,000.

m High Performance. The generation of feature sets requires a sin-
gle hashing pass over the reference sets (a second one maybe re-
quired if a more sophisticated feature selection algorihtm is used).
The actual observed speed for a single-threaded implementation of
45MB/s shows that an improved version should be able to able to
keep up with the sequential transfer rates of modern large-capacity
hard drives.

m Privacy Preservation. The use of hashes as proxies for the actual
data enables some generic inquiries to be performed without read-
ing (interpretting) the actual data. This is likely to help in many
delicate situations arising at the beginning of many investigation
and would allow legitimate privacy concerns to be addressed.

6. Future Work

The presented work is only the first step in what we see as a long-
term project with the ultimate goal to bring as much as possible of
established information retrieval techniques into the forensics domain.
So far the field has been hobbled by the fact that most such techniques
are designed to work on text. However, we showed it is possible (with
some likely limitations) to apply many of the notions, such as statistically
unlikely features to quickly discern likely related objects without before
interpreting them (through an application).

Shorter term, we would like to come up with a better feature selec-
tion algorithm that minimizes the feature set while maximizing coverage,
modify the MRS hashing tool to separate out the class-common from the
instance specific features so those could be examined separately. On the
experimental side, we would like to perform a much larger scale exper-
iment to gain more insight into the practical aspects of the developed
scheme.

References

2]

[3]

[4]

digital documents, Proceedings of the ACM SIGMOD Annual Con-
ference, San Francisco, CA, May 1995.

B. Bloom, Space/time tradeoffs in hash coding with allowable errors,
Communications of the ACM, vol 13 no 7, pp. 422-426, 1970.

A. Broder, S. Glassman, M. Manasse, and G. Zweig, Syntactic clus-
tering of the web, Proceedings of the 6th International WWW Con-
ference, pages 1157-1166, Santa Clara, CA, Apr. 1997.

A. Broder and M. Mitzenmacher, Network applications of Bloom
filters: a survey, Internet Mathematics, vol. 1. no. 4, pp. 485-509,
2005.

J.Kornblum, Identifying almost identical files using context triggered
piecewise hashing, Proceedings of the 6th Annual DFRWS Confer-
ence, Aug 2006, Lafayette, IN.

National Software Reference Library,
http://www.nsrl.nist.gov/index.html.

D. Patterson, Latency Lags Bandwidth, Communications of the
ACM, Vol. 47(10), 2004.

M. Rabin, Fingerprinting by random polynomials. Technical Report
TR-15-81, Center for Research in Computing Technology, Harvard
University, 1981.

V.Roussev, Y.Chen, T.Bourg, G.G.Richard III, md5bloom: Forensic
filesystem hashing revisited, Proceedings of the 6th Annual DFRWS
Conference (DFRWS’06). Aug 2006, Lafayette, IN.

[10] V. Roussev, G.G. Richard III, L. Marziale, Multi-resolution sim-

ilarity hashing, Proceedings of the 7th Annual DFRWS Conference
(DFRWS’07). Aug 2007, Pittsburgh, PA.

