
Chapter 1CLASSPRINTS: CLASS-AWARE SIMILARITYHASHESHash-based Classi�ation of DataVassil Roussev, Golden G. Rihard III, and Lodovio MarzialeDepartment of Computer Siene, University of New OrleansNew Orleans, Louisiana 70148, USAvassil,golden,vio�s.uno.eduAbstrat In this paper, we introdue the notion of lass-aware similarity hashes,or lassprints whih is an outgrowth of reent work on similarity hash-ing. Spei�ally, we build on the notion of ontext-based hashing to de-sign a framework both for identifying data type based on ontent, andfor building harateristi similarity hashes for individual data itemsthat an be used for orrelation.The most important feature of the presented work is that the proessan be fully automated and no prior knowledge of the underlying datais neessary, beyond the seletion of a training set of objets. Theapproah relies entirely on these representative sets to haraterize apartiular data type. We present an empirial study whih demonstratesthe pratiality of this work on real data and sketh out a ompleteimplementation.Keywords: Digital forensis, similarity hashing, lassprints, lass-aware similarityhashing1. IntrodutionThe problem of identifying the type of data inside a ontainer, suh asa �le or disk image, has been studied sine the very beginning of digitalforensis, yet very few positive results have been published. The abil-ity to identify the underlying type of the data without the help of the�le system metadata omes in very handy in data reovery (�le arving)operations to either validate or invalidate the urrently attempted reov-

2ery. For example, if a tool is trying to arve out a JPEG �le and runsinto plain text data, it is lear that the proess is not on the right trak.Data arving is routinely applied to target images to reover (fragmentsof) deleted data and is often a ritial soure of information.Another related line of researh that is automated data orrelation.With the exponential apaity growth, targets an easily enompass mul-tiple terabytes of data so the ability to quikly separate the potentiallyrelevant from the learly irrelevant information will have a great impaton the length and auray of a forensi inquiry. One of the most pow-erful tools in that regard is the ability to use prior aumulated dat tomake that separation. In traditional (physial) forensis this inludes alarge and sophistiated set of di�erent databases that an help an in-vestigator quikly zero in on the relevant. Unfortunately, in the digitalworld, we are well behind the urve of what is needed. Currently, theonly suess story is the use of sets of �le hashes of known system andappliation �les, suh as the ones maintained by NIST [6℄ and ommer-ial vendors. Yet those hashes are a drop in the buket and it is unlearhow long this approah an be extended into the future as more andmore hashes are added{are we going to need ompute lusters just to dohash searhes?Traditional, �le-based (ryptographi) hashes have their plae but arealso a very fragile tool{they must know the exat binary representationof all versions of the objets of interest. Reently, a few shemes havebeen proposed that approah the issue of �nding similarity among ob-jets. In [5℄, Kornblum proposed a ontext-based approah to dynam-ially split up the �le into individually hashable hunks from whih aomposite hash is produed. While the use of hash-based ontext (whihan be traed bak to early work in information retrieval suh as [1℄ and[3℄, and is ultimately derived from Rabin's original work [8℄) is a provenidea, the rest of the sheme laks robustness. At the same time, we pro-posed a signi�antly more robust approah based on Bloom �lters [2℄,[4℄ but laked an elegant mehanism to split up arbitrary targets.In [10℄ we ombined those two ideas with a sizeable body of experi-mental results and ame up with the idea of Multi-Resolution Similarity(MRS) hashing that an be applied to arbitrary targets. Indeed the re-sults allowed us to quite learly relate data �les that would be lassi�edby a human as related, suh as di�erent drafts of the same doument.Also, we were able to identify the presene of the ontent of a �le (e.g. aJPEG) inside a larger target (raw drive image) without any knowledgeor assistane from the �le system.The latter property, in addition to making the tool generi, also arriessigni�ant performane advantages stemming from the fat that a single

Roussev, Rihard & Marziale 3sequential pass over the image is required. In ontrast, any �le-basedtool requires aess to �le metadata, whih results in a non-sequentialdisk aess pattern. Figure 1 illustrates the e�ets of non-sequentialaess on the throughput of a modern hard drive, as measured by Intel'sIOMeter tool (iometer.org). As little 2% randomness in the work loadan ost 30% in performane penalty while 5% an ut performane inhalf. Currently, forensi tool design appears oblivious to this issue.
70 68 68

48

36

24

7 4

0

10

20

30

40

50

60

70

80

Adv
er

tis
ed

10
0%

 S
eq

uen
tia

l

99
%

 S
eq

ue
nt

ial

98
%

 S
equ

en
tia

l

95
%

 S
equ

en
tia

l

90
%

 S
equ

en
tia

l

50
%

 S
equ

en
tia

l

0%
 S

eq
ue

nt
ial

MB/s

Figure 1. Observed HDD throughput for WDC WD5000KS (500GB)With apaity growth outpaing both bandwidth and lateny im-provements [7℄, forensi target are, in fat getting bigger relative ourapaity to proess them on time. Therefore, building performane-onsious tools should be a priority for researhers in the �eld.The rest of the paper is laid out as follows. First, we briey reviewthe similarity hashing tehniques relevent to this work. Next, we outlinethe ideas and approahes designed to extend it. Finally, we present someexperimental results in support of our onjetures, and summarize theresults.2. Bakground{Similarity HashingIn this setion we briey summarize our reent work on similarityhashing; for a more in-depth disussion, please refer to [10℄.Blok hashing.The most basi sheme that an be used for determin-ing similarity of binary data is blok-based hashing. In short, ryptohashes are generated and stored for every blok of a hosen �xed size(e.g. 512 bytes). Later, the blok-level hashes from two di�erent soures

4an be ompared and, by ounting the number of bloks in ommon, ameasure of similarity an be determined. The main advantage of thissheme is that it is already supported by existing hashing tools and it isomputationally eÆient{the hash omputation is faster than disk I/O.The disadvantages beome fairly obvious when blok-level hashing isapplied to disover �le similarity. Suess heavily depends on the phys-ial layout of the �les being very similar. For example if we searh forversions of a given text doument, a simple harater insertion/deletiontowards the beginning of the �le ould render all blok hashes di�er-ent. Similarly, blok-based hashes will not tell us if an objet, suh asa JPEG image, is embedded in a ompound doument, suh as an MSWord doument. In short, the sheme is too fragile and a negative resultdoes not reveal any information.Context-triggered pieewise (CTP) hashing. In [5℄, Kornblum pro-posed an approah that overomes some of the limitations of blok-basedhashes and presents an implementation alled ssdeep. The basi idea isto identify ontent markers, alled ontexts, within a (binary data) ob-jet and to store the sequene of hashes for eah of the piees (or hunks)in between ontexts (Figure 2). In other words, the boundaries of thehunk hashes are not determined by an arbitrary �xed blok size but arebased on the ontent of the objet. The hash of the objet is simply aonatenation of the individual hunk hashes. Thus, if a new version ofthe objet is reated by loalized insertions and deletions, some of theoriginal hunk hashes will be modi�ed, reordered, or deleted but enoughwill remain in the new omposite hash to identify the similarity.
c1 c2 c3 … cn-2 cn-1 cn

context chunks

Hash = h(c1)h(c2) …h(cn)Figure 2. Context-based hashing (a.k.a. shingling)To identify a ontext, ssdeep uses a rolling hash over a window of = 7 bytes, whih slides over the target. If the lowest t bits of thehash (the trigger) are all equal to one, a ontext is deteted, the hashomputation of the preeding hunk is ompleted, and a new hunk hashis started. The exat value of t depends on the size of the target as thetool generates a �xed-size result. Intuitively, a bigger t produes lessfrequent ontext mathes and redues the granularity of the hash.

Roussev, Rihard & Marziale 5Bloom �lter similarity hashing. In [9℄, we developed a sheme, whihutilizes Bloom �lters to derive objet similarity. The basi idea is to usethe (known) struture of an objet to break it into omponents whihare individually hashed and plaed into a (Bloom) �lter. Using themathematial properties of �lters, we demonstrated both analytiallyand empirially that the bitwise omparison of �lters an yield a veryuseful measure of the similarity between the binary representations oftwo (or more) objets.In [10℄ we further developed this idea by ombining it with ontext-based objet deomposition (or shingling in the terminology of [3℄ tohandle arbitrary binary data. We also devised a standardized multi-resolution sheme whih allows: a) objets of arbitrary sizes to be hashedwithout loss of resolution; b) objets of various size to be e�etivelyompared, for example, it is pratial to searh for (the remnants of) a1MB �le inside a target that is over 100GB.Another important property is that, due to the use of Bloom �lters asa basi builing blok, the resulting hashes are extemely memory eÆient{they require no more than 0.5% of the size of the target. Thus, theomplete multi-resolution hash of a 500GB hard drive an �t in themain memory of a modern workstation.Performane-wise, the MRS hash generation sheme is no more ex-pensive than a blok-based MD5 hash, even in its early (unoptimized)version. The omparison step is very eÆient and an be sped up by us-ing lower resolution for large targets and/or delegating it to the graphisproessor whih, in our experiene, an speed up the proess 20 timeson an NVidia G80 proessor.3. Class-aware Similarity HashingAs disussed in the preeding setion, MRS hashes are a very sensi-tive and tunable tool in terms of �nding similarities among binary dataobjets. However, what is not lear so far is why are the objets similar?From our previous work, it appears that for user-generated artifats (e.g.jpg, do, pdf �les) the existing MRS sheme works reasonably well inthat the identi�ed similar objets stand out from the rest of the objetsof the same lass.However, this is not the ase for other lasses of objets suh as app-pliations and system libraries. When applied in its original form, MRShashing �nds too many appliations/libraries to be similar, whih limitsits usefulness. We should note that these are not false positives{the bi-nary representations of these objets are indeed similar. The observedsyntatix similarities are generally artifats of the partiular �le for-

6mat (ommon headers, et.), the ompiler used, and statially-linkedlibraries. For example, in some early experiments, we identi�ed (muhto our surprise) that most of the libraries we sampled had repetitivefuntions. In other words, the exat same funtion ode was presentmultiple times. These funtions tend to be small and are likely om-piler artifats. Nonetheless, they inrease the binary similarity but arenot neessarily indiative of higher semanti similarity of the omparedobjets, whih is the typial goal of an investigation.Thus, the main question we fous on in this work is: Is it possibleto e�etively separate the lass-ommon features (hashes) of an objetfrom its harateristi individual features? Solving this problem wouldallows us to de�ne an objet lass (e.g. MS Word douments) as a setof (ontext-based) hashes that are ommonly found in suh objets. Apositive outome has at least three forensially-importnant appliations:We an enhane the data reovery proess by helping to eliminateat least some of the false positive results that urrently plaguevirtually all �le arving tools in existene.We an enhane the similarity hashing sheme by splitting up thelass-ommon from the objet-spei� hashes, whih would yieldmore foused similarity results.We an searh an unstrutured target to estimate the number ofobjets of di�erent types without resorting to reading the �le sys-tem. This is a signi�ant advantage as we an obtain the informa-tion after a single sequential pass over the target (partial resultsould, of ourse, be presented while the operation is under way).This ould help in the triage proess when faed with a large vol-ume of data.Quite apart from aiding in regular investigatations, the latter two ap-pliation ould help in some triky legal situations where searh andseizure must be balaned against privay onerns. While the judiialsystem has not yet diretly addressed the bounds of what is a reasonablesearh in the digital world, the above apabilities ould provide ause forsearh, e.g., the disk ontains �le that is similar to something relevant,or the drive ontains a large number of pitures. Conversely, it ouldhelp rule out unlikely andidates.The main thrust of this paper is to validate the onept of lass-aware similarity hashing. In other words, we must verify the existeneof lass-spei� features that an be aptured through hashing, quantifythe number and overage of these features, and ross-validate them byomparing them with other lasses.

Roussev, Rihard & Marziale 74. Empirial StudyThe atual experiments are based on a ustom tool, whih utilizes aounting Bloom �lter with a single hash funtion. (This is equivalent toa hash table whih stores as values the number of data hunks that hashto the partiular hash key.) The proedure is a variant on the originalMRS hashing sheme.For eah �le, given parameters and t:Hash a sliding window of size with the djb2 hash funtion.If the t rightmost bits are all set to 1, delare a new ontext mathand md5 -hash the data hunk between the previous ontext andthe urrent one and plae it in the ounting Bloom �lter; advanethe window by the minimum hunk size (2t�2) and go bak todjb2 -hashing;Otherwise, slide the window by one position and go bak to djb2 -hashing.To avoid the potential problem of a single �le ontributing the samehash multiple times (a real issue with low-entropy data), we reate aloal �lter for eah �le and limit the number of ontributions to one perkey and then add them to the total in the master table. (This is not aproblem with the atual MRS hash beause it does not use a ounting�lter.)After this step, we build a histogram whih, for a given number k,gives us the number of �lter loations that have a ount of k (that is, k�les ontain that hash). Based on the histogram, we an de�ne a notionof overage for threshold r{the number of �les that ontain a hash thathas a ount of at least r in the master table. Intuitively, we wouldlike to obtain maximum overage with the fewest number of features,so we start with the highest frequeny and go down in order. It is notdiÆult to see that this approah does not guarantee minimal (in thenumber of hashes) overage but it works fairly well in pratie. We alsode�ne relative overage as the fration of objets overed by hashes withount of at least r. The size of the overage is the number of hashespartiipating in the overage.4.1 Referene File SetsBelow are brief desriptions of the �le sets we used in the experiments,along with their orresponding mneumoni abbreviation used in the re-sult presentation. Note that the �rst three ones were also used in our

8previous work [10℄ and were obtained at random from the Internet. Therest are standard sets of system �les, as desribed.do The sample ontained 355 �les varying in size from 64KB to10MB for a total of 298MB of data.xls 415 �les, 64KB to 7MB, 257MB total.jpg 737 �les, 64KB to 5MB, 121MB total.win-dll 1,243 �les from a fully-pathed WindowsXP's system32diretory ranging between 3KB and 640KB, 141MB total.win-exe 343 �les from the WindowsXP's system32 diretory be-tween 1KB and 17MB, 46MB total.yg-bin 1,272 �les from the bin diretory of Cygwin 2.4 (this in-ludes all exeutable �les); sizes: 3KB-7.6MB, 192MB total.ubu-bin 445 �les from the /usr/bin diretory of a fully-pathedUbuntu 6.06, 16KB-3.85MB, 63MB total.4.2 First Order Analysis: File Set FeaturesOur �rst order of business is to establish our hypothesis that datafrom di�erent �le type does indeed exhibit ommon features that an beaptured via ontext-based hashing. A feature in this ontext is a hashthat is ommon to a set of data objets of a spei� lass. The overageof this feature omprises of all the objets that ontain that feature atleast one. Ideally, we would like to see a relatively small set of featuresover as muh as possible of the referene set.As a simple sanity hek, we ran our ode �rst against a set of 600�les (256KB eah) of random data. The results showed that only twofeatures were ommon to �ve di�erent �les, with all the rest ommon tono more than two �les. This is preisely what we expeted{random datashould not exhibit any features. By extension, high-entropy data ob-jets (ompressed and/or enypted) annot be analyzed in this manner.Figure 3 summarizes our �ndings with respet to three ommon types ofuser-reated data: MS Word douments (do), MS Exel spreadsheets(xls), and JPEG images (jpg). For eah type, the �rst olumn gives thenumber of hashes in the over, the seond provides the relative over-age (perent of the �le set overed), and the third gives the absolutenumber of �les overed. Thus, the row f5, 91, 335g means that the top5 ('most popular') hashes over 335 �les, whih onstitutes 91% of thetotal number of �les in the referene set. Note that, both in this �gure

Roussev, Rihard & Marziale 9
Hashes Cov % Cover Hashes Cov % Cover Hashes Cov % Cover

1 52 188 1 59 245 1 28 212

2 54 195 3 83 345 4 52 388

3 59 212 4 92 382 5 54 400

4 91 325 5 94 394 10 59 439

5 91 325 6 97 403 38 72 536

6 93 331 7 97 406 42 75 557

8 93 333 23 100 415 65 78 579

9 93 333 81 79 585

10 94 334 90 81 604

12 97 346 122 85 629

15 97 347 405 88 653

20 99 352 3857 98 729

774 100 355

doc xls jpg

Figure 3. First-order analysis of user dataand the next, a good number of intermediate rows have been deletedto redue spae requirements. We have piked points that represent theoverall trends. We should also mention that all hashes are generated asdesribed in the Similarity Hashing setion with parameters = 8 andt = 5.It is quite lear that for do and xls �les there are ompat and easilyidenti�able feature hash sets, or lassprints that represent the types. Inthe ase of do �les, we only need 20 feature hashes to provide 99% ov-erage. It is notable that the top four give 91% overage so hoosing theut-o� point an be somewhat subjetive. (The rows in bold representthe overages we have hosen for the ross analysis in the next setion.)For jpg �les things are a bit more problemati as we need substantiallylarger feature set to over the referene �les. Intuitively, the larger thefeature set the more instane-spei� the features it inludes. In allases, we have tried to keep the feature set relatively small and we hosethe inetion point where the rate at whih we need to add features isgreater than the rate at whih we inrease overage. For example, in thejpg ase, the jump from 10 to 38 hashes, yields an inrease in overagefrom 59 to 72%; the next step, from 38 to 42 is relatively small andyields a orrespondingly modest improvement from 72 to 75%. How-ever, the following inrease from 42 to 65 only yields an improvementof 75 to 78%, therefore, the 42 was hosen as the ut o� point for theexperiments in the next setion.

10
Hashes Cov % Cover Hashes Cov % Cover Hashes Cov % Cover Hashes Cov % Cover

1 41 510 1 44 151 1 11 146 1 53 239

2 58 733 3 46 158 2 22 285 2 64 285

4 68 853 4 77 265 36 30 384 3 78 351

9 71 886 5 78 267 49 36 458 4 82 365

17 75 933 6 79 271 90 41 529 6 84 377

43 80 1004 7 80 273 105 49 624 9 85 379

122 85 1061 8 86 295 144 55 706 33 91 407

541 90 1120 11 87 296 276 61 778 50 91 409

2478 95 1193 12 89 305 654 67 853 1100 92 412

5390 97 1215 56 90 306 1947 72 921 3208 93 416

14208 98 1228 139 91 310 3332 75 958 5820 93 417

36716 99 1237 332 95 324 7013 80 1022 6648 94 419

453 95 325 16913 86 1096 9192 95 424

987 96 329 29985 89 1138 42238 97 435

9873 98 334 65119 93 1190

win-exe cyg-bin ubu-binwin-dll

Figure 4. First-order analysis of system exeutablesThe analysis of the system exeutables (Figure 4) shows some in-teresting results. The sets were hosen so they had various degrees ofommonality. First, all of them represent primarily exeutable ode forthe Intel x86 arhiteture. Although other resoures ould be bundledinto an exeutable, these are relatively small system utilities that areunlikely to ontain muh beyond ode. Next, the win-dll, win-exe, andyg-bin all represent ode for MS Windows. Finally, the yg-win �les area Windows port of the same utilities under Unix/Linux, as representedby the ubu-bin set, and are ompiled with the same ompiler{g.The main observation is that it is very easy to identify the inetionpoints for the win-dll, win-exe, and ubu-bin sets but not the yg-binone. Part of the reason ould be that it ontains more �les than two ofthe other sets, however, win-dll has about the same number of �les andexhibits no suh issues. The referene over we piked has substantiallymore hashes than for any of the other sets (654) yet the overage issubstantially lower{only 2/3 of the referene set.In summary, the observed data shows that it is, indeed, possible tode�ne a lass-ommon feature set based on similarity hashes. The nextimportant question is to establish whether this features are lass-de�ningin that they are generally not present among the features of other lasses.

Roussev, Rihard & Marziale 114.3 Seond Order Analysis: Cross-SetCorrelationIt is quite lear that if the lass-ommon features disovered are sharedby multiple lasses, their analytial value will be signi�antly diminished.Among the hosen sets, there are reasons to believe that, at least some ofthese set, share features. For ompleteness, we ompared all 21 possible
doc xls jpg win-dll win-exe cyg-bin ubu-bin

doc 3 (17%)
xls 3 (43%)
jpg

win-dll 9 (21%) 1 (2%)
win-exe 9 (75%)
cyg-bin 1 (0.2%) 1 (0.2%)
ubu-bin 1 (3%)Figure 5. Feature set intersetion(unordered) pairs of feature sets and alulated their intersetion bothin relative and in absolute terms. The results are presented on Figure5 with only the non-zero elements shown. The table is symmetrial interms of the absolute numbers, however, in parenthesis we have put theintersetion as a fration of the total number of features for the row set.For example, the xls and do sets have 3 features in ommon, whihrepresents 43% of all features for the xls �les and 17% of the featuresfor the do �les.It is lear that the fdo, xlsg and fwin-dll, win-exeg set pairs annotbe onsidered independent, whih is hardly an unexpeted result. Yet,even a feature from the intersetion an be a useful hint as to the ontentof a target as it helps eliminate a large number of other possibilities.4.4 Example Use: Estimating Drive ContentAfter ompleting the above analysis we deided to apply the olleteddo feature set to a 7.2GB Windows partition residing on the personallaptop of one of the authors. The basi idea is to look bak at thereferene set and alulate how many features (on average) eah of the�les mathes. Then, using the number of mathes against the unknowntarget we an roughly estimate the number of do �les present.As it turns out, the original referene set was not ideal for this purpose{it ontained a number of �les that had a very high number of featuremathes with the 'top' �le ontaining 547 feature set mathes. Upon

12loser review, the �le ontained a huge amount of repetitive informa-tion. Evidently, a more systemati approah to seleting referene setswould be helpful in avoiding suh pathologial ases.Nonetheless, we took the median of 9 feature mathes per �le andapplied to the target Windows partition whih had yielded 298 featuremathes. Thus, our best guess would be that there are approximately298=9 = 33 MS Word douments on the partition. The atual ountwas 68 so our estimate was o� by a fator of two. While more work isneeded to improve and empirially validate this approah, we see somepotential here.It is also notable that, impliitly, we applied the features from ourtraining set to a ompletely unknown and unrelated target, whih isfurther evidene that the identi�ed features are generi lass features.Another interesting detail is the throughput of the operation. Thesingle-threaded, unoptimized version of the ode was able to performthe searh in 2:44min, or at the rate of 45MB/s. This is signi�antbeause the ode is readily paralellizable so 2-4 threads on a dual- orquad-ore proessor should be quite apable of keeping up with the sus-tained 80-100MB/s tranfer rate of urrent generation of large-apaityHDD. In other words, this kind of information ould be obtained, forexample, during the initial loning of a target without inurring any la-teny overhead. Further, the operation is hash-generation onstrainedso estimates for multiple types of data ould easily be performed in asingle run with virtually no e�et on performane.5. ConlusionsIn this paper we motivated and justi�ed the introdution of an en-haned similarity hashing sheme alled lass-aware similarity hashing.We established empirially that, for several lasses of ommonly-used�le types, it is possible to automatially extrat lass-de�ning featuresets using ontext-based hash generation. In other words, we showedthat it is pratial to de�ne ommon �le types based solely on syntatifeatures of their binary representation. The proposed approah has thefollowing properties:Generiity and Salability. The approah an be applied to anydata sets of pratial size and arbitrary type. By relying solelyon the binary objet representation without any knowledge of theobjet's struture we an apply the sheme to, for example, ase-spei� data that is not supported by standard tools.Automation. The sheme allows omplete automation{all it needsis referene groups of �les representing the di�erent user-de�ned

Roussev, Rihard & Marziale 13types. After the training is ompleted, the derived feature sets anbe automatially to the raw data that needs to be lassi�ed.Ease of Use. The tool does not require any spei� quali�ationsfrom the user and needs no deep understanding of the underlyingmethods to obtain and interpret the results.Spae EÆieny. Our experiments show that the typial featureset onsists of a few dozen features. Using Bloom �lters, it ouldbe represented in 256 bytes and have false positive rates of lessthan 1 in 10,000.High Performane. The generation of feature sets requires a sin-gle hashing pass over the referene sets (a seond one maybe re-quired if a more sophistiated feature seletion algorihtm is used).The atual observed speed for a single-threaded implementation of45MB/s shows that an improved version should be able to able tokeep up with the sequential transfer rates of modern large-apaityhard drives.Privay Preservation. The use of hashes as proxies for the atualdata enables some generi inquiries to be performed without read-ing (interpretting) the atual data. This is likely to help in manydeliate situations arising at the beginning of many investigationand would allow legitimate privay onerns to be addressed.6. Future WorkThe presented work is only the �rst step in what we see as a long-term projet with the ultimate goal to bring as muh as possible ofestablished information retrieval tehniques into the forensis domain.So far the �eld has been hobbled by the fat that most suh tehniquesare designed to work on text. However, we showed it is possible (withsome likely limitations) to apply many of the notions, suh as statistiallyunlikely features to quikly disern likely related objets without beforeinterpreting them (through an appliation).Shorter term, we would like to ome up with a better feature sele-tion algorithm that minimizes the feature set while maximizing overage,modify the MRS hashing tool to separate out the lass-ommon from theinstane spei� features so those ould be examined separately. On theexperimental side, we would like to perform a muh larger sale exper-iment to gain more insight into the pratial aspets of the developedsheme.

Referenes

[1℄ S. Brin, J. Davis, H. Garia-Molina, Copy detetion mehanisms fordigital douments, Proeedings of the ACM SIGMOD Annual Con-ferene, San Franiso, CA, May 1995.[2℄ B. Bloom, Spae/time tradeo�s in hash oding with allowable errors,Communiations of the ACM, vol 13 no 7, pp. 422-426, 1970.[3℄ A. Broder, S. Glassman, M. Manasse, and G. Zweig, Syntati lus-tering of the web, Proeedings of the 6th International WWW Con-ferene, pages 1157-1166, Santa Clara, CA, Apr. 1997.[4℄ A. Broder and M. Mitzenmaher, Network appliations of Bloom�lters: a survey, Internet Mathematis, vol. 1. no. 4, pp. 485-509,2005.[5℄ J.Kornblum, Identifying almost idential �les using ontext triggeredpieewise hashing, Proeedings of the 6th Annual DFRWS Confer-ene, Aug 2006, Lafayette, IN.[6℄ National Software Referene Library,http://www.nsrl.nist.gov/index.html.[7℄ D. Patterson, Lateny Lags Bandwidth, Communiations of theACM, Vol. 47(10), 2004.[8℄ M. Rabin, Fingerprinting by random polynomials. Tehnial ReportTR-15-81, Center for Researh in Computing Tehnology, HarvardUniversity, 1981.[9℄ V.Roussev, Y.Chen, T.Bourg, G.G.Rihard III, md5bloom: Forensi�lesystem hashing revisited, Proeedings of the 6th Annual DFRWSConferene (DFRWS'06). Aug 2006, Lafayette, IN.[10℄ V. Roussev, G.G. Rihard III, L. Marziale, Multi-resolution sim-ilarity hashing, Proeedings of the 7th Annual DFRWS Conferene(DFRWS'07). Aug 2007, Pittsburgh, PA.

