
Chapter 1CLASSPRINTS: CLASS-AWARE SIMILARITYHASHESHash-based Classi�
ation of DataVassil Roussev, Golden G. Ri
hard III, and Lodovi
o MarzialeDepartment of Computer S
ien
e, University of New OrleansNew Orleans, Louisiana 70148, USAvassil,golden,vi
o�
s.uno.eduAbstra
t In this paper, we introdu
e the notion of 
lass-aware similarity hashes,or 
lassprints whi
h is an outgrowth of re
ent work on similarity hash-ing. Spe
i�
ally, we build on the notion of 
ontext-based hashing to de-sign a framework both for identifying data type based on 
ontent, andfor building 
hara
teristi
 similarity hashes for individual data itemsthat 
an be used for 
orrelation.The most important feature of the presented work is that the pro
ess
an be fully automated and no prior knowledge of the underlying datais ne
essary, beyond the sele
tion of a training set of obje
ts. Theapproa
h relies entirely on these representative sets to 
hara
terize aparti
ular data type. We present an empiri
al study whi
h demonstratesthe pra
ti
ality of this work on real data and sket
h out a 
ompleteimplementation.Keywords: Digital forensi
s, similarity hashing, 
lassprints, 
lass-aware similarityhashing1. Introdu
tionThe problem of identifying the type of data inside a 
ontainer, su
h asa �le or disk image, has been studied sin
e the very beginning of digitalforensi
s, yet very few positive results have been published. The abil-ity to identify the underlying type of the data without the help of the�le system metadata 
omes in very handy in data re
overy (�le 
arving)operations to either validate or invalidate the 
urrently attempted re
ov-



2ery. For example, if a tool is trying to 
arve out a JPEG �le and runsinto plain text data, it is 
lear that the pro
ess is not on the right tra
k.Data 
arving is routinely applied to target images to re
over (fragmentsof) deleted data and is often a 
riti
al sour
e of information.Another related line of resear
h that is automated data 
orrelation.With the exponential 
apa
ity growth, targets 
an easily en
ompass mul-tiple terabytes of data so the ability to qui
kly separate the potentiallyrelevant from the 
learly irrelevant information will have a great impa
ton the length and a

ura
y of a forensi
 inquiry. One of the most pow-erful tools in that regard is the ability to use prior a

umulated dat tomake that separation. In traditional (physi
al) forensi
s this in
ludes alarge and sophisti
ated set of di�erent databases that 
an help an in-vestigator qui
kly zero in on the relevant. Unfortunately, in the digitalworld, we are well behind the 
urve of what is needed. Currently, theonly su

ess story is the use of sets of �le hashes of known system andappli
ation �les, su
h as the ones maintained by NIST [6℄ and 
ommer-
ial vendors. Yet those hashes are a drop in the bu
ket and it is un
learhow long this approa
h 
an be extended into the future as more andmore hashes are added{are we going to need 
ompute 
lusters just to dohash sear
hes?Traditional, �le-based (
ryptographi
) hashes have their pla
e but arealso a very fragile tool{they must know the exa
t binary representationof all versions of the obje
ts of interest. Re
ently, a few s
hemes havebeen proposed that approa
h the issue of �nding similarity among ob-je
ts. In [5℄, Kornblum proposed a 
ontext-based approa
h to dynam-i
ally split up the �le into individually hashable 
hunks from whi
h a
omposite hash is produ
ed. While the use of hash-based 
ontext (whi
h
an be tra
ed ba
k to early work in information retrieval su
h as [1℄ and[3℄, and is ultimately derived from Rabin's original work [8℄) is a provenidea, the rest of the s
heme la
ks robustness. At the same time, we pro-posed a signi�
antly more robust approa
h based on Bloom �lters [2℄,[4℄ but la
ked an elegant me
hanism to split up arbitrary targets.In [10℄ we 
ombined those two ideas with a sizeable body of experi-mental results and 
ame up with the idea of Multi-Resolution Similarity(MRS) hashing that 
an be applied to arbitrary targets. Indeed the re-sults allowed us to quite 
learly relate data �les that would be 
lassi�edby a human as related, su
h as di�erent drafts of the same do
ument.Also, we were able to identify the presen
e of the 
ontent of a �le (e.g. aJPEG) inside a larger target (raw drive image) without any knowledgeor assistan
e from the �le system.The latter property, in addition to making the tool generi
, also 
arriessigni�
ant performan
e advantages stemming from the fa
t that a single



Roussev, Ri
hard & Marziale 3sequential pass over the image is required. In 
ontrast, any �le-basedtool requires a

ess to �le metadata, whi
h results in a non-sequentialdisk a

ess pattern. Figure 1 illustrates the e�e
ts of non-sequentiala

ess on the throughput of a modern hard drive, as measured by Intel'sIOMeter tool (iometer.org). As little 2% randomness in the work load
an 
ost 30% in performan
e penalty while 5% 
an 
ut performan
e inhalf. Currently, forensi
 tool design appears oblivious to this issue.
70 68 68

48

36

24

7 4

0

10

20

30

40

50

60

70

80

Adv
er

tis
ed

10
0%

 S
eq

uen
tia

l

99
%

 S
eq

ue
nt

ial

98
%

 S
equ

en
tia

l

95
%

 S
equ

en
tia

l

90
%

 S
equ

en
tia

l

50
%

 S
equ

en
tia

l

0%
 S

eq
ue

nt
ial

MB/s

Figure 1. Observed HDD throughput for WDC WD5000KS (500GB)With 
apa
ity growth outpa
ing both bandwidth and laten
y im-provements [7℄, forensi
 target are, in fa
t getting bigger relative our
apa
ity to pro
ess them on time. Therefore, building performan
e-
onsious tools should be a priority for resear
hers in the �eld.The rest of the paper is laid out as follows. First, we brie
y reviewthe similarity hashing te
hniques relevent to this work. Next, we outlinethe ideas and approa
hes designed to extend it. Finally, we present someexperimental results in support of our 
onje
tures, and summarize theresults.2. Ba
kground{Similarity HashingIn this se
tion we brie
y summarize our re
ent work on similarityhashing; for a more in-depth dis
ussion, please refer to [10℄.Blo
k hashing.The most basi
 s
heme that 
an be used for determin-ing similarity of binary data is blo
k-based hashing. In short, 
ryptohashes are generated and stored for every blo
k of a 
hosen �xed size(e.g. 512 bytes). Later, the blo
k-level hashes from two di�erent sour
es



4
an be 
ompared and, by 
ounting the number of blo
ks in 
ommon, ameasure of similarity 
an be determined. The main advantage of thiss
heme is that it is already supported by existing hashing tools and it is
omputationally eÆ
ient{the hash 
omputation is faster than disk I/O.The disadvantages be
ome fairly obvious when blo
k-level hashing isapplied to dis
over �le similarity. Su

ess heavily depends on the phys-i
al layout of the �les being very similar. For example if we sear
h forversions of a given text do
ument, a simple 
hara
ter insertion/deletiontowards the beginning of the �le 
ould render all blo
k hashes di�er-ent. Similarly, blo
k-based hashes will not tell us if an obje
t, su
h asa JPEG image, is embedded in a 
ompound do
ument, su
h as an MSWord do
ument. In short, the s
heme is too fragile and a negative resultdoes not reveal any information.Context-triggered pie
ewise (CTP) hashing. In [5℄, Kornblum pro-posed an approa
h that over
omes some of the limitations of blo
k-basedhashes and presents an implementation 
alled ssdeep. The basi
 idea isto identify 
ontent markers, 
alled 
ontexts, within a (binary data) ob-je
t and to store the sequen
e of hashes for ea
h of the pie
es (or 
hunks)in between 
ontexts (Figure 2). In other words, the boundaries of the
hunk hashes are not determined by an arbitrary �xed blo
k size but arebased on the 
ontent of the obje
t. The hash of the obje
t is simply a
on
atenation of the individual 
hunk hashes. Thus, if a new version ofthe obje
t is 
reated by lo
alized insertions and deletions, some of theoriginal 
hunk hashes will be modi�ed, reordered, or deleted but enoughwill remain in the new 
omposite hash to identify the similarity.
c1 c2 c3 … cn-2 cn-1 cn

context chunks

Hash = h(c1)h(c2) …h(cn)Figure 2. Context-based hashing (a.k.a. shingling)To identify a 
ontext, ssdeep uses a rolling hash over a window of
 = 7 bytes, whi
h slides over the target. If the lowest t bits of thehash (the trigger) are all equal to one, a 
ontext is dete
ted, the hash
omputation of the pre
eding 
hunk is 
ompleted, and a new 
hunk hashis started. The exa
t value of t depends on the size of the target as thetool generates a �xed-size result. Intuitively, a bigger t produ
es lessfrequent 
ontext mat
hes and redu
es the granularity of the hash.



Roussev, Ri
hard & Marziale 5Bloom �lter similarity hashing. In [9℄, we developed a s
heme, whi
hutilizes Bloom �lters to derive obje
t similarity. The basi
 idea is to usethe (known) stru
ture of an obje
t to break it into 
omponents whi
hare individually hashed and pla
ed into a (Bloom) �lter. Using themathemati
al properties of �lters, we demonstrated both analyti
allyand empiri
ally that the bitwise 
omparison of �lters 
an yield a veryuseful measure of the similarity between the binary representations oftwo (or more) obje
ts.In [10℄ we further developed this idea by 
ombining it with 
ontext-based obje
t de
omposition (or shingling in the terminology of [3℄ tohandle arbitrary binary data. We also devised a standardized multi-resolution s
heme whi
h allows: a) obje
ts of arbitrary sizes to be hashedwithout loss of resolution; b) obje
ts of various size to be e�e
tively
ompared, for example, it is pra
ti
al to sear
h for (the remnants of) a1MB �le inside a target that is over 100GB.Another important property is that, due to the use of Bloom �lters asa basi
 builing blo
k, the resulting hashes are extemely memory eÆ
ient{they require no more than 0.5% of the size of the target. Thus, the
omplete multi-resolution hash of a 500GB hard drive 
an �t in themain memory of a modern workstation.Performan
e-wise, the MRS hash generation s
heme is no more ex-pensive than a blo
k-based MD5 hash, even in its early (unoptimized)version. The 
omparison step is very eÆ
ient and 
an be sped up by us-ing lower resolution for large targets and/or delegating it to the graphi
spro
essor whi
h, in our experien
e, 
an speed up the pro
ess 20 timeson an NVidia G80 pro
essor.3. Class-aware Similarity HashingAs dis
ussed in the pre
eding se
tion, MRS hashes are a very sensi-tive and tunable tool in terms of �nding similarities among binary dataobje
ts. However, what is not 
lear so far is why are the obje
ts similar?From our previous work, it appears that for user-generated artifa
ts (e.g.jpg, do
, pdf �les) the existing MRS s
heme works reasonably well inthat the identi�ed similar obje
ts stand out from the rest of the obje
tsof the same 
lass.However, this is not the 
ase for other 
lasses of obje
ts su
h as app-pli
ations and system libraries. When applied in its original form, MRShashing �nds too many appli
ations/libraries to be similar, whi
h limitsits usefulness. We should note that these are not false positives{the bi-nary representations of these obje
ts are indeed similar. The observedsynta
tix similarities are generally artifa
ts of the parti
ular �le for-



6mat (
ommon headers, et
.), the 
ompiler used, and stati
ally-linkedlibraries. For example, in some early experiments, we identi�ed (mu
hto our surprise) that most of the libraries we sampled had repetitivefun
tions. In other words, the exa
t same fun
tion 
ode was presentmultiple times. These fun
tions tend to be small and are likely 
om-piler artifa
ts. Nonetheless, they in
rease the binary similarity but arenot ne
essarily indi
ative of higher semanti
 similarity of the 
omparedobje
ts, whi
h is the typi
al goal of an investigation.Thus, the main question we fo
us on in this work is: Is it possibleto e�e
tively separate the 
lass-
ommon features (hashes) of an obje
tfrom its 
hara
teristi
 individual features? Solving this problem wouldallows us to de�ne an obje
t 
lass (e.g. MS Word do
uments) as a setof (
ontext-based) hashes that are 
ommonly found in su
h obje
ts. Apositive out
ome has at least three forensi
ally-importnant appli
ations:We 
an enhan
e the data re
overy pro
ess by helping to eliminateat least some of the false positive results that 
urrently plaguevirtually all �le 
arving tools in existen
e.We 
an enhan
e the similarity hashing s
heme by splitting up the
lass-
ommon from the obje
t-spe
i�
 hashes, whi
h would yieldmore fo
used similarity results.We 
an sear
h an unstru
tured target to estimate the number ofobje
ts of di�erent types without resorting to reading the �le sys-tem. This is a signi�
ant advantage as we 
an obtain the informa-tion after a single sequential pass over the target (partial results
ould, of 
ourse, be presented while the operation is under way).This 
ould help in the triage pro
ess when fa
ed with a large vol-ume of data.Quite apart from aiding in regular investigatations, the latter two ap-pli
ation 
ould help in some tri
ky legal situations where sear
h andseizure must be balan
ed against priva
y 
on
erns. While the judi
ialsystem has not yet dire
tly addressed the bounds of what is a reasonablesear
h in the digital world, the above 
apabilities 
ould provide 
ause forsear
h, e.g., the disk 
ontains �le that is similar to something relevant,or the drive 
ontains a large number of pi
tures. Conversely, it 
ouldhelp rule out unlikely 
andidates.The main thrust of this paper is to validate the 
on
ept of 
lass-aware similarity hashing. In other words, we must verify the existen
eof 
lass-spe
i�
 features that 
an be 
aptured through hashing, quantifythe number and 
overage of these features, and 
ross-validate them by
omparing them with other 
lasses.



Roussev, Ri
hard & Marziale 74. Empiri
al StudyThe a
tual experiments are based on a 
ustom tool, whi
h utilizes a
ounting Bloom �lter with a single hash fun
tion. (This is equivalent toa hash table whi
h stores as values the number of data 
hunks that hashto the parti
ular hash key.) The pro
edure is a variant on the originalMRS hashing s
heme.For ea
h �le, given parameters 
 and t:Hash a sliding window of size 
 with the djb2 hash fun
tion.If the t rightmost bits are all set to 1, de
lare a new 
ontext mat
hand md5 -hash the data 
hunk between the previous 
ontext andthe 
urrent one and pla
e it in the 
ounting Bloom �lter; advan
ethe window by the minimum 
hunk size (2t�2) and go ba
k todjb2 -hashing;Otherwise, slide the window by one position and go ba
k to djb2 -hashing.To avoid the potential problem of a single �le 
ontributing the samehash multiple times (a real issue with low-entropy data), we 
reate alo
al �lter for ea
h �le and limit the number of 
ontributions to one perkey and then add them to the total in the master table. (This is not aproblem with the a
tual MRS hash be
ause it does not use a 
ounting�lter.)After this step, we build a histogram whi
h, for a given number k,gives us the number of �lter lo
ations that have a 
ount of k (that is, k�les 
ontain that hash). Based on the histogram, we 
an de�ne a notionof 
overage for threshold r{the number of �les that 
ontain a hash thathas a 
ount of at least r in the master table. Intuitively, we wouldlike to obtain maximum 
overage with the fewest number of features,so we start with the highest frequen
y and go down in order. It is notdiÆ
ult to see that this approa
h does not guarantee minimal (in thenumber of hashes) 
overage but it works fairly well in pra
ti
e. We alsode�ne relative 
overage as the fra
tion of obje
ts 
overed by hashes with
ount of at least r. The size of the 
overage is the number of hashesparti
ipating in the 
overage.4.1 Referen
e File SetsBelow are brief des
riptions of the �le sets we used in the experiments,along with their 
orresponding mneumoni
 abbreviation used in the re-sult presentation. Note that the �rst three ones were also used in our



8previous work [10℄ and were obtained at random from the Internet. Therest are standard sets of system �les, as des
ribed.do
 The sample 
ontained 355 �les varying in size from 64KB to10MB for a total of 298MB of data.xls 415 �les, 64KB to 7MB, 257MB total.jpg 737 �les, 64KB to 5MB, 121MB total.win-dll 1,243 �les from a fully-pat
hed WindowsXP's system32dire
tory ranging between 3KB and 640KB, 141MB total.win-exe 343 �les from the WindowsXP's system32 dire
tory be-tween 1KB and 17MB, 46MB total.
yg-bin 1,272 �les from the bin dire
tory of Cygwin 2.4 (this in-
ludes all exe
utable �les); sizes: 3KB-7.6MB, 192MB total.ubu-bin 445 �les from the /usr/bin dire
tory of a fully-pat
hedUbuntu 6.06, 16KB-3.85MB, 63MB total.4.2 First Order Analysis: File Set FeaturesOur �rst order of business is to establish our hypothesis that datafrom di�erent �le type does indeed exhibit 
ommon features that 
an be
aptured via 
ontext-based hashing. A feature in this 
ontext is a hashthat is 
ommon to a set of data obje
ts of a spe
i�
 
lass. The 
overageof this feature 
omprises of all the obje
ts that 
ontain that feature atleast on
e. Ideally, we would like to see a relatively small set of features
over as mu
h as possible of the referen
e set.As a simple sanity 
he
k, we ran our 
ode �rst against a set of 600�les (256KB ea
h) of random data. The results showed that only twofeatures were 
ommon to �ve di�erent �les, with all the rest 
ommon tono more than two �les. This is pre
isely what we expe
ted{random datashould not exhibit any features. By extension, high-entropy data ob-je
ts (
ompressed and/or en
ypted) 
annot be analyzed in this manner.Figure 3 summarizes our �ndings with respe
t to three 
ommon types ofuser-
reated data: MS Word do
uments (do
), MS Ex
el spreadsheets(xls), and JPEG images (jpg). For ea
h type, the �rst 
olumn gives thenumber of hashes in the 
over, the se
ond provides the relative 
over-age (per
ent of the �le set 
overed), and the third gives the absolutenumber of �les 
overed. Thus, the row f5, 91, 335g means that the top5 ('most popular') hashes 
over 335 �les, whi
h 
onstitutes 91% of thetotal number of �les in the referen
e set. Note that, both in this �gure



Roussev, Ri
hard & Marziale 9
Hashes Cov % Cover Hashes Cov % Cover Hashes Cov % Cover

1 52 188 1 59 245 1 28 212

2 54 195 3 83 345 4 52 388

3 59 212 4 92 382 5 54 400

4 91 325 5 94 394 10 59 439

5 91 325 6 97 403 38 72 536

6 93 331 7 97 406 42 75 557

8 93 333 23 100 415 65 78 579

9 93 333 81 79 585

10 94 334 90 81 604

12 97 346 122 85 629

15 97 347 405 88 653

20 99 352 3857 98 729

774 100 355

doc xls jpg

Figure 3. First-order analysis of user dataand the next, a good number of intermediate rows have been deletedto redu
e spa
e requirements. We have pi
ked points that represent theoverall trends. We should also mention that all hashes are generated asdes
ribed in the Similarity Hashing se
tion with parameters 
 = 8 andt = 5.It is quite 
lear that for do
 and xls �les there are 
ompa
t and easilyidenti�able feature hash sets, or 
lassprints that represent the types. Inthe 
ase of do
 �les, we only need 20 feature hashes to provide 99% 
ov-erage. It is notable that the top four give 91% 
overage so 
hoosing the
ut-o� point 
an be somewhat subje
tive. (The rows in bold representthe 
overages we have 
hosen for the 
ross analysis in the next se
tion.)For jpg �les things are a bit more problemati
 as we need substantiallylarger feature set to 
over the referen
e �les. Intuitively, the larger thefeature set the more instan
e-spe
i�
 the features it in
ludes. In all
ases, we have tried to keep the feature set relatively small and we 
hosethe in
e
tion point where the rate at whi
h we need to add features isgreater than the rate at whi
h we in
rease 
overage. For example, in thejpg 
ase, the jump from 10 to 38 hashes, yields an in
rease in 
overagefrom 59 to 72%; the next step, from 38 to 42 is relatively small andyields a 
orrespondingly modest improvement from 72 to 75%. How-ever, the following in
rease from 42 to 65 only yields an improvementof 75 to 78%, therefore, the 42 was 
hosen as the 
ut o� point for theexperiments in the next se
tion.



10
Hashes Cov % Cover Hashes Cov % Cover Hashes Cov % Cover Hashes Cov % Cover

1 41 510 1 44 151 1 11 146 1 53 239

2 58 733 3 46 158 2 22 285 2 64 285

4 68 853 4 77 265 36 30 384 3 78 351

9 71 886 5 78 267 49 36 458 4 82 365

17 75 933 6 79 271 90 41 529 6 84 377

43 80 1004 7 80 273 105 49 624 9 85 379

122 85 1061 8 86 295 144 55 706 33 91 407

541 90 1120 11 87 296 276 61 778 50 91 409

2478 95 1193 12 89 305 654 67 853 1100 92 412

5390 97 1215 56 90 306 1947 72 921 3208 93 416

14208 98 1228 139 91 310 3332 75 958 5820 93 417

36716 99 1237 332 95 324 7013 80 1022 6648 94 419

453 95 325 16913 86 1096 9192 95 424

987 96 329 29985 89 1138 42238 97 435

9873 98 334 65119 93 1190

win-exe cyg-bin ubu-binwin-dll

Figure 4. First-order analysis of system exe
utablesThe analysis of the system exe
utables (Figure 4) shows some in-teresting results. The sets were 
hosen so they had various degrees of
ommonality. First, all of them represent primarily exe
utable 
ode forthe Intel x86 ar
hite
ture. Although other resour
es 
ould be bundledinto an exe
utable, these are relatively small system utilities that areunlikely to 
ontain mu
h beyond 
ode. Next, the win-dll, win-exe, and
yg-bin all represent 
ode for MS Windows. Finally, the 
yg-win �les area Windows port of the same utilities under Unix/Linux, as representedby the ubu-bin set, and are 
ompiled with the same 
ompiler{g

.The main observation is that it is very easy to identify the in
e
tionpoints for the win-dll, win-exe, and ubu-bin sets but not the 
yg-binone. Part of the reason 
ould be that it 
ontains more �les than two ofthe other sets, however, win-dll has about the same number of �les andexhibits no su
h issues. The referen
e 
over we pi
ked has substantiallymore hashes than for any of the other sets (654) yet the 
overage issubstantially lower{only 2/3 of the referen
e set.In summary, the observed data shows that it is, indeed, possible tode�ne a 
lass-
ommon feature set based on similarity hashes. The nextimportant question is to establish whether this features are 
lass-de�ningin that they are generally not present among the features of other 
lasses.



Roussev, Ri
hard & Marziale 114.3 Se
ond Order Analysis: Cross-SetCorrelationIt is quite 
lear that if the 
lass-
ommon features dis
overed are sharedby multiple 
lasses, their analyti
al value will be signi�
antly diminished.Among the 
hosen sets, there are reasons to believe that, at least some ofthese set, share features. For 
ompleteness, we 
ompared all 21 possible
doc xls jpg win-dll win-exe cyg-bin ubu-bin

doc 3 (17%)
xls 3 (43%)
jpg

win-dll 9 (21%) 1 (2%)
win-exe 9 (75%)
cyg-bin 1 (0.2%) 1 (0.2%)
ubu-bin 1 (3%)Figure 5. Feature set interse
tion(unordered) pairs of feature sets and 
al
ulated their interse
tion bothin relative and in absolute terms. The results are presented on Figure5 with only the non-zero elements shown. The table is symmetri
al interms of the absolute numbers, however, in parenthesis we have put theinterse
tion as a fra
tion of the total number of features for the row set.For example, the xls and do
 sets have 3 features in 
ommon, whi
hrepresents 43% of all features for the xls �les and 17% of the featuresfor the do
 �les.It is 
lear that the fdo
, xlsg and fwin-dll, win-exeg set pairs 
annotbe 
onsidered independent, whi
h is hardly an unexpe
ted result. Yet,even a feature from the interse
tion 
an be a useful hint as to the 
ontentof a target as it helps eliminate a large number of other possibilities.4.4 Example Use: Estimating Drive ContentAfter 
ompleting the above analysis we de
ided to apply the 
olle
teddo
 feature set to a 7.2GB Windows partition residing on the personallaptop of one of the authors. The basi
 idea is to look ba
k at thereferen
e set and 
al
ulate how many features (on average) ea
h of the�les mathes. Then, using the number of mat
hes against the unknowntarget we 
an roughly estimate the number of do
 �les present.As it turns out, the original referen
e set was not ideal for this purpose{it 
ontained a number of �les that had a very high number of featuremat
hes with the 'top' �le 
ontaining 547 feature set mat
hes. Upon



12
loser review, the �le 
ontained a huge amount of repetitive informa-tion. Evidently, a more systemati
 approa
h to sele
ting referen
e setswould be helpful in avoiding su
h pathologi
al 
ases.Nonetheless, we took the median of 9 feature mat
hes per �le andapplied to the target Windows partition whi
h had yielded 298 featuremat
hes. Thus, our best guess would be that there are approximately298=9 = 33 MS Word do
uments on the partition. The a
tual 
ountwas 68 so our estimate was o� by a fa
tor of two. While more work isneeded to improve and empiri
ally validate this approa
h, we see somepotential here.It is also notable that, impli
itly, we applied the features from ourtraining set to a 
ompletely unknown and unrelated target, whi
h isfurther eviden
e that the identi�ed features are generi
 
lass features.Another interesting detail is the throughput of the operation. Thesingle-threaded, unoptimized version of the 
ode was able to performthe sear
h in 2:44min, or at the rate of 45MB/s. This is signi�
antbe
ause the 
ode is readily paralellizable so 2-4 threads on a dual- orquad-
ore pro
essor should be quite 
apable of keeping up with the sus-tained 80-100MB/s tranfer rate of 
urrent generation of large-
apa
ityHDD. In other words, this kind of information 
ould be obtained, forexample, during the initial 
loning of a target without in
urring any la-ten
y overhead. Further, the operation is hash-generation 
onstrainedso estimates for multiple types of data 
ould easily be performed in asingle run with virtually no e�e
t on performan
e.5. Con
lusionsIn this paper we motivated and justi�ed the introdu
tion of an en-han
ed similarity hashing s
heme 
alled 
lass-aware similarity hashing.We established empiri
ally that, for several 
lasses of 
ommonly-used�le types, it is possible to automati
ally extra
t 
lass-de�ning featuresets using 
ontext-based hash generation. In other words, we showedthat it is pra
ti
al to de�ne 
ommon �le types based solely on synta
ti
features of their binary representation. The proposed approa
h has thefollowing properties:Generi
ity and S
alability. The approa
h 
an be applied to anydata sets of pra
ti
al size and arbitrary type. By relying solelyon the binary obje
t representation without any knowledge of theobje
t's stru
ture we 
an apply the s
heme to, for example, 
ase-spe
i�
 data that is not supported by standard tools.Automation. The s
heme allows 
omplete automation{all it needsis referen
e groups of �les representing the di�erent user-de�ned



Roussev, Ri
hard & Marziale 13types. After the training is 
ompleted, the derived feature sets 
anbe automati
ally to the raw data that needs to be 
lassi�ed.Ease of Use. The tool does not require any spe
i�
 quali�
ationsfrom the user and needs no deep understanding of the underlyingmethods to obtain and interpret the results.Spa
e EÆ
ien
y. Our experiments show that the typi
al featureset 
onsists of a few dozen features. Using Bloom �lters, it 
ouldbe represented in 256 bytes and have false positive rates of lessthan 1 in 10,000.High Performan
e. The generation of feature sets requires a sin-gle hashing pass over the referen
e sets (a se
ond one maybe re-quired if a more sophisti
ated feature sele
tion algorihtm is used).The a
tual observed speed for a single-threaded implementation of45MB/s shows that an improved version should be able to able tokeep up with the sequential transfer rates of modern large-
apa
ityhard drives.Priva
y Preservation. The use of hashes as proxies for the a
tualdata enables some generi
 inquiries to be performed without read-ing (interpretting) the a
tual data. This is likely to help in manydeli
ate situations arising at the beginning of many investigationand would allow legitimate priva
y 
on
erns to be addressed.6. Future WorkThe presented work is only the �rst step in what we see as a long-term proje
t with the ultimate goal to bring as mu
h as possible ofestablished information retrieval te
hniques into the forensi
s domain.So far the �eld has been hobbled by the fa
t that most su
h te
hniquesare designed to work on text. However, we showed it is possible (withsome likely limitations) to apply many of the notions, su
h as statisti
allyunlikely features to qui
kly dis
ern likely related obje
ts without beforeinterpreting them (through an appli
ation).Shorter term, we would like to 
ome up with a better feature sele
-tion algorithm that minimizes the feature set while maximizing 
overage,modify the MRS hashing tool to separate out the 
lass-
ommon from theinstan
e spe
i�
 features so those 
ould be examined separately. On theexperimental side, we would like to perform a mu
h larger s
ale exper-iment to gain more insight into the pra
ti
al aspe
ts of the developeds
heme.





Referen
es

[1℄ S. Brin, J. Davis, H. Gar
ia-Molina, Copy dete
tion me
hanisms fordigital do
uments, Pro
eedings of the ACM SIGMOD Annual Con-feren
e, San Fran
is
o, CA, May 1995.[2℄ B. Bloom, Spa
e/time tradeo�s in hash 
oding with allowable errors,Communi
ations of the ACM, vol 13 no 7, pp. 422-426, 1970.[3℄ A. Broder, S. Glassman, M. Manasse, and G. Zweig, Synta
ti
 
lus-tering of the web, Pro
eedings of the 6th International WWW Con-feren
e, pages 1157-1166, Santa Clara, CA, Apr. 1997.[4℄ A. Broder and M. Mitzenma
her, Network appli
ations of Bloom�lters: a survey, Internet Mathemati
s, vol. 1. no. 4, pp. 485-509,2005.[5℄ J.Kornblum, Identifying almost identi
al �les using 
ontext triggeredpie
ewise hashing, Pro
eedings of the 6th Annual DFRWS Confer-en
e, Aug 2006, Lafayette, IN.[6℄ National Software Referen
e Library,http://www.nsrl.nist.gov/index.html.[7℄ D. Patterson, Laten
y Lags Bandwidth, Communi
ations of theACM, Vol. 47(10), 2004.[8℄ M. Rabin, Fingerprinting by random polynomials. Te
hni
al ReportTR-15-81, Center for Resear
h in Computing Te
hnology, HarvardUniversity, 1981.[9℄ V.Roussev, Y.Chen, T.Bourg, G.G.Ri
hard III, md5bloom: Forensi
�lesystem hashing revisited, Pro
eedings of the 6th Annual DFRWSConferen
e (DFRWS'06). Aug 2006, Lafayette, IN.[10℄ V. Roussev, G.G. Ri
hard III, L. Marziale, Multi-resolution sim-ilarity hashing, Pro
eedings of the 7th Annual DFRWS Conferen
e(DFRWS'07). Aug 2007, Pittsburgh, PA.




