
Bluepipe: A Scalable Architecture for On-the-Spot Digital Forensics

Yun Gao
Golden G. Richard III

Vassil Roussev

Department of Computer Science
University of New Orleans

Contact: {ygao, golden, vassil}@cs.uno.edu

Abstract

Traditional digital forensics methods are based on the in-depth examination of computer systems in a
lab setting. Such methods are standard practice in acquiring digital evidence and are indispensable as an
investigative approach. However, they are also relatively heavyweight and expensive and require signifi-
cant expertise on part of the investigator. Thus, they cannot be applied on a wider scale and, in particular,
they cannot be used as a tool by regular law enforcement officers in their daily work.

In this paper, we motivate the need for on-the-spot digital forensics tools that supplement lab meth-
ods and discuss the specific user and software engineering requirements for such tools. We present the
Bluepipe architecture for on-the-spot investigation and the Bluepipe remote forensics protocol that we
have developed and relate them to a set of requirements. We also discuss some of the details of our ongo-
ing prototype implementation.
Keywords: computer forensics, Bluetooth, Palm, PDAs

1 Introduction
The current approach for obtaining digital evidence is based on impounding the suspect system (or

media) and examining it in a forensics lab, where all analysis is carried out (usually on a copy of the
original data). Several non-trivial problems are inherent in this process:
 Impounding potential evidence is invasive. Most businesses are highly dependent on their IT infra-

structure for daily operations. Hence, there would be a natural reluctance to shut down operations and
part with their equipment without a warrant.

 Users have legitimate privacy concerns. Even if users wish to be fully cooperative, they may be hesi-
tant, for example, to allow sensitive company data (ultimately irrelevant to the inquiry) to be proc-
essed outside the company.

 Logistical problems in moving computer equipment . Physically moving a large amount of computer
equipment to a forensics lab and ensuring the safety and integrity of the equipment is a difficult proc-
ess. Computers can be easily damaged during the move and require safekeeping so they can be re-
turned to owners in their original condition.

 Not all data is relevant. Typically, only a small fraction of the examined data is of interest in an in-
vestigation (e.g., one or two rogue machines out of tens, or hundreds). Thus, a lot of the effort in
copying and carefully examining a large number of targets will be in vain.
In our view, the only solution to these problems is to perform a preliminary screening of the evi-

dence on-the-spot. An on-the-spot investigation allows targets to be examined in a non-invasive way that
is sensitive to privacy concerns. Removal of machines and wholesale copying is avoided unless potential
evidence is discovered. Clearly, this benefits both the investigation and the owner of the equipment.

Our approach is to build a system that allows an investigator to safely use the resources of one or
more target machines to perform a preliminary inquiry. It allows an investigator to control the simulta-

 1

neous investigation of a number of machines using a PDA or laptop and to collaborate in real time with
off-site experts. The Bluepipe architecture addresses the technical issues of building such a system for
collaborative, on-the-spot digital forensics investigation. It has been developed with significant input
from digital forensics investigators from local, state, and federal agencies, working in the Gulf Coast
Computer Forensics Laboratory (GCCFL).

1.1 Usage Scenarios
Before we describe the technical details of the architecture, we consider several scenarios where our

work is applicable.
SOHO (Small Office/Home Office). This scenario encompasses a small-scale inquiry of a few machines
for personal and/or small business use. Using our system, an investigator performing a preliminary in-
vestigation of a home office can quickly determine if sufficient evidence exists for obtaining a search
warrant, seizing equipment, and performing a traditional in-depth investigation in a forensics laboratory.
This preliminary investigation could even be carried out by a relatively inexperienced person, collaborat-
ing in real time with a remote expert.
School. This scenario represents a middle-sized inquiry on the order of tens of machines. An important
aspect here is that the network infrastructure is likely to be less capable and the administration less consis-
tent and sophisticated. A preliminary investigation in this scenario will allow an investigator to quickly
identify interesting targets and can substantially reduce the number of machines that must be seized for
further investigation.
Small company. This scenario is similar in scale to the previous one but the infrastructure and administra-
tion are likely to be more advanced and, therefore, potentially more valuable in facilitating an inquiry.
Still, having lightweight, non-invasive capabilities for on-the-spot examination can be instrumental in
alleviating some of the company’s privacy and operational concerns and facilitating cooperation.
Corporation. This scenario is essentially the same as the previous one, with the added issue of a grander
scale—on the order of hundreds/thousands of target systems. In a way, this is the extreme case that dem-
onstrates the limitations of lab-based methods. In this scenario, a preliminary screening of target ma-
chines can substantially reduce the number of machines that might need a thorough examination in a labo-
ratory setting.

1.2 Technical Requirements
Based on our discussion so far, we can identify the following primary requirements for on-the-spot

digital forensics tools:
Verifiability. Certainly the most important requirement for any digital forensics tool is that it must pro-
duce results that are permissible in a court of law. In practice, this means that the prosecution must be
able to demonstrate to a jury/judge that all results are genuine and reproducible, and that the original
source has not been tampered with. Ideally, such claims should be third party verifiable to eliminate any
doubts about the presented evidence (e.g., NIST performs certification tests that go a long way towards
raising the credibility of a digital forensics tool). A more subtle point here is that it is also highly desirable
for any methods used to be simple enough (in principle) so that their basics can be explained to the com-
mon juror who may not be particularly computer literate. Finally, we note that the software should sup-
port the established, standard procedures for handling digital evidence.
Portability. This requirement is practically self-evident—the whole idea behind on-the-spot tools is to
take the investigation to the target. Hence, it must be possible, in fact easy, to do so. Portability has two
main aspects—portable computing and portable communication infrastructure. In recent years, in addition
to laptop computers, a number of general-purpose portable devices, such as PDAs, have become powerful
enough to be used in investigative work, as our own experience shows. Similarly, wireless communica-
tion technologies, such as Bluetooth, 802.11, and 3G cellular networks offer practical and economical
ways for building an on-the-spot communication infrastructure that is independent of the target systems.

 2

Thus, instead of expending time and effort on taking over the existing communication infrastructure on
the target, investigators could quickly set up their own and get on with their work. Another important ad-
vantage here is that this gives an additional level of assurance that any evidence collected is untainted.
Scalability. The problems of scale in digital forensics work can be viewed from two different angles: an
increased scale of investigative targets (e.g., corporate) and an increased number of individual investiga-
tions. These two scalability problems call for different approaches. The first scenario resembles the clas-
sical problems of scale in distributed applications, in which the concurrent work of a large number of ma-
chines must be coordinated. The second one represents human problems of scale—an increase in the
number of potential investigative targets that outpaces the in increase in the number of people dealing
with them. Hence, it is important that technological solutions for digital forensics work become available
to a larger fraction of law enforcement officers. This also includes having at least some capabilities to
conduct preliminary inquiries in smaller communities that currently have none and are totally reliant on
regional centers.
Usability. In continuation of the previous requirement, digital forensics tools must be easy to use by non-
experts. For example, it should be possible to allow experts to set up some standard queries to be run on
suspect machines and these queries to be run by non-experts.
Cost efficiency. This requirement is another fall out from the scalability problem—to put more forensic
tools in the hands of law enforcement in the face of slow growth of available resources, the tools must be
based on commodity, off-the-shelf technologies. Also, the tools must allow for some of the routine work
to be delegated to non-experts thereby freeing experts to focus on the most critical part of the investiga-
tion.
Multi-user capabilities. Since many forensic investigations are the work of a team of experts, software
tools should be able to support team interaction. Specifically, for on-the-spot analysis, there are at least
two concrete cases that ought to be supported. The first one is the remote help/control scenario. Along the
lines of our previous requirements, if a non-expert (or an expert-in-training) is performing an inquiry, it
should be possible for a seasoned expert to provide remote help and, if necessary, be able to take com-
plete control of the inquiry. In other words, having such capabilities provides for more efficient use of
expertise. The second scenario involves having a team working on a field investigation with a significant
number of target systems. Obviously, it should be possible for team members to easily cooperate and co-
ordinate their actions to ensure there are no lapses or duplication of effort. Ideally, it should be possible to
seamlessly support (different combinations of) both scenarios so that the physical location of team mem-
bers becomes essentially irrelevant.
Extensibility. It is virtually a standard software engineering practice to require that the functionality of the
system be easily extensible. This is especially important in digital forensics software because new prob-
lems emerge on a daily basis so being able to easily extend a tool is crucial for its long-term relevance.
Another point here is related to the certification of the software. For example, if one of the certifiable
points is that the specific tool leaves the target unchanged, then this must be verified for every new ver-
sion. While the certifying authority must perform comprehensive testing of the entire system, a modular
software architecture with a firewall between different modules reduces the difficulty of internal testing
efforts.

2 The Basic Bluepipe Architecture
Let us now consider how the above requirements have been addressed in the architectural design of

our system—Bluepipe. The fundamental architectural approach is based on the client/server paradigm and
is depicted on Figure 1. The Bluepipe server (BpS) runs on the target machine while a Bluepipe client
(BpC) executes on the investigator’s machine, establishes a connection to the server and issues queries.
The communication between the two parties is governed by a SOAP-based communication protocol. In
the next section, we outline the overall implementation of our current prototype. At this point we only

 3

note that the server software boots from a write-disabled version of Linux on CD-ROM, mounts the hard
disk(s) of the target, and performs the requested queries.

BpS

Query
Processor

BpC

UI
BpProxy/

Coord Server

BpS1

BpSn

…

BpC1

BpCm
… UI1

UImClient/UI
Coordination

Serv er/Query
Coordination

a) Single-client/single server b) Multiple-clients/multip le-servers

BpS

Query
Processor

BpC

UI

BpS

Query
Processor

BpC

UI
BpProxy/

Coord Server

BpS1

BpSn

…

BpC1

BpCm
… UI1

UImClient/UI
Coordination

Serv er/Query
Coordination

BpProxy/
Coord Server

BpS1

BpSn

…

BpC1

BpCm
… UI1

UImClient/UI
Coordination

Serv er/Query
Coordination

a) Single-client/single server b) Multiple-clients/multip le-servers

Figure 1. The Bluepipe architecture.
The primary responsibility of the Bluepipe server is to implement the server side of the Bluepipe pro-

tocol (BpP) and to translate the received queries into invocations of different modules. The primary re-
sponsibility of the Bluepipe client is to translate into the BpP the queries submitted by the user. Typically,
these will come from the user interface (UI) module running on the client machine (Figure 1a). However,
a BpC implementation may also become a proxy server by implementing the server interface. This allows
for a remote client that does not have a direct connection to the target machine to gain indirect access. By
allowing multiple clients to connect to it, a proxy server can also serve as a coordination server among a
group of clients by dispatching the submitted queries to different target machines (Figure 1b). Another
function of the coordination server is to provide generic collaborative features that facilitate teamwork,
such as:
 selectable degrees of coupling among the displays of client machine; that is, controlling the degree to

which view of different users are allowed to diverge;
 enforcement of specific concurrency and access control policies, such as ensuring that no conflicting

operations are submitted in parallel and that certain actions are only executed by privileged users.

Cu Bootable Bluepipe CD Removable media

Target

Bluetooth or 802.11
dongle 3G/VPN

Remote investigator(s)

Handheld Bluepipe client

Figure 2. Current prototype implementation with a single client.

3 Prototype Implementation

Our current base implementation of the Bluepipe architecture is depicted in Figure 2. It consists of a
client-side application, which is used to control the forensics survey, a target-side, self-contained Linux
distribution and associated target-side applications, and several additional bits of hardware that enable
wireless connectivity with the target machine and provide storage for captured digital evidence. We cur-
rently support both PDA and (laptop) Linux-based clients. While laptop clients clearly have numerous
advantages, PDA-based clients may be more suitable in certain scenarios. For one, PDAs are cheaper than

 4

laptops and easier to transport. Many PDAs also offer a number of peripheral features, including an inte-
grated digital camera, useful for documenting a crime scene, a voice recorder for case notes, and storage
for documents that guide investigation, such as a checklist for seizure of electronic evidence. Wireless
PDAs also ease the difficulty in transmitting evidence back to a laboratory.

Bluepipe currently supports both Bluetooth and 802.11 for communication between the client and
target machine, each of which has significant advantages and disadvantages. Bluetooth consumes sub-
stantially less power and is arguably more secure, particularly because of its reduced range. 802.11 con-
sumes a lot more power and has far more range than is really needed, but provides higher bandwidth.
802.11 also allows a single Bluepipe client to handle more target machines simultaneously. Both Blue-
tooth and 802.11 support encrypted communication, which address any concerns with eavesdropping and
tampering with transmitted evidence. Our general approach does not raise any issues beyond those that
are typical in applications relying on wireless communication; hence, we do not specifically discuss the
wireless security issues further.

To use Bluepipe, an investigator has to perform three simple steps: plug in a USB dongle to enable
wireless communication with the target computer, boot the target computer using a Bluepipe boot CD,
and launch the Bluepipe application on a PDA or laptop. Obviously, law enforcement officers using this
system will need to be trained to ensure that the target computer boots from the Bluepipe boot CD. As
additional insurance, a bootable floppy can also be used which forces a boot from the CD, to make the
procedure more foolproof. We do not expect the typical law enforcement officer to have sufficient train-
ing to write Bluepipe patterns; rather, we expect a digital forensics expert to have prepared those in ad-
vance.

3.1 Server-side
On the target side, a self-contained Linux distribution on CD is used to bring up the target machine.

The Linux distribution provides drivers for the Bluetooth and 802.11 dongles that provide wireless con-
nectivity to the client as well as for USB keys, which can be used to provide extra storage. We use a
modified variant of the procedure described in [4] to create the bootable Linux CD. There are a number
of technical issues that must be addressed to create bootable Linux distributions; most of these are cov-
ered in detail in that document. On boot, the Linux distribution executes a Perl script that receives SOAP
RPCs from the client, executes them, and returns results to the client. All processing on the target side
consists of read-only operations against the secondary storage on the target machine—no data is modi-
fied. An audit log tracks all operations performed on the target; this log is transmitted to the client at the
end of pattern processing. As the Bluepipe architecture is extended, the Perl application on the target side
grows—the simple communication protocol understood by the client is sufficient for a wide range of in-
teractions, and reduces changes to the client-side application.

3.2 Client-side
The Bluepipe client application runs under Palm OS 5 or Linux and is implemented entirely in C.

The Palm client application is primarily a graphical file transfer application, allowing selection of pat-
terns, transmission of these patterns to the target-side software, and reception of evidence from the target-
side software. Patterns are opaque to the Palm application—it does not directly interpret the content of
Bluepipe pattern files. Metrowerks Codewarrior 9 under Windows XP is used for development of the
Palm application, which is written in C. Our development strategy is to maintain both Linux and Palm
versions of the client application. We test changes to the client under Linux, then port the changes to the
Palm, since the development cycle is substantially faster under Linux.

3.3 Bluepipe Proxy
A Bluepipe proxy is a process running on the machine of the investigator who is on-the-spot and acts

as an intermediary between a remote client and the server. This allows for a remote investigator to per-

 5

form a remote investigation and/or to help the on-the-spot examiner. The proxy process appears to the
remote client as the server machine and appears to the server as the client machine. The proxy accepts
connection from the remote client (over any available TCP/IP connection), wraps RPC calls from the cli-
ent, transmits the calls to the server, then sends the returned object from the server RPC back to the client.
All the RPC calls are handled by SOAP. The proxy is designed to run in a way that neither the server nor
the client need to be rewritten, except that the client needs to switch to the proxy’s namespace.

3.4 Bluepipe Protocol
The Bluepipe protocol provides flexible, robust, and secure connectivity between all Bluepipe enti-

ties. Communication is based on remote procedure calls (RPC) using the Simple Object Access Protocol
(SOAP). SOAP provides a simple and lightweight mechanism for exchanging information between peers
and is based on XML [11]. The use of an industry standard low-level protocol on which to build the
Bluepipe protocol allows different client/server implementations to be quickly developed and adapted for
different platforms/scenarios.

Because some Bluepipe operations are expected to complete quickly and some require substantial
processing time, both synchronous and asynchronous communication is supported by the protocol. The
synchronous version follows the standard RPC semantics where the return value is the result of the query
and the client-side blocks until it receives the reply. Apparently, for long operations, blocking operations
are impractical. Instead, the client submits an asynchronous request where the server records the request
and returns immediately.

The request carries an XML-encoded pattern to be executed on the target and a number of additional
parameters. These include:

 Update period—how often should the server inform the client on its progress. For long opera-
tions users are accustomed to monitoring their progress hence the need for the server to provide
the updates.

 Incremental updates—a flag indicating whether partial results should be submitted along with
progress reports: in many situations, a partial result may be all that is needed (e.g., illegal content
found).

 Priority—while some operations may take a long time, the investigator should be allowed to per-
form quick checks that do not require extensive processing. The priority mechanism an effective
means of specifying the importance or length of the request and can also specified by the user.

The initial reply from the server either returns the complete result (synchronous case) or a query
identifier to the client. Subsequent updates use the identifier to distinguish among the different tasks be-
ing run and may also contain partial results. Finally, there is a trivial cancellation request that allows the
client to terminate queries that the user wants to stop.

 In the following section, we describe in more detail the current version of the pattern language we
use to perform searches.

3.5 Bluepipe Patterns
A pattern in Bluepipe is an XML document describing a set of operations to be executed against a

target machine. All Bluepipe operations preserve the state of secondary storage on the target machine.
Supported operations include checking for existence of files with specific names or hash values, searching
files for keywords, and retrieving files from the target machine. Directory listings and partition table list-
ings (useful for fingerprinting the operating systems installed on the target) can also be retrieved. When
the needs of a preliminary forensics survey cannot easily be met by the predefined Bluepipe operations,
Perl scripts can be embedded in patterns to perform specialized tasks. Patterns are stored on removable
media on the Bluepipe client (e.g., a Palm handheld device); when the user chooses a particular pattern, it
is transmitted to the target and executed. Results of the pattern execution are then transmitted back to the

 6

client and stored on removable media. The general format of a Bluepipe 0.7 pattern appears below, fol-
lowed by a brief discussion of each operation.

<BLUEPIPE NAME=nameofpattern>
<DIR TARGET=pathname/>
<DIR TARGET=PURGE/>
<FINDFILE USEHASHES=Boolean
 LOCALDIR=pathname
 MSG=string
 RECURSIVE=Boolean
 RETRIEVE=Boolean

 MINSIZE=n
 MAXSIZE=n>

 <FILE ID=identifier
 RETRIEVE=Boolean
 FINDDELETED=Boolean

 MSG=string/>
</FINDFILE>
<GREP SEARCH=string
 FILE=pathname
 MSG=string/>
<LISTPARTITIONS LOCAL=pathname
 GENHASHES=Boolean/>
<LISTDIR TARGET=pathname
 LOCAL=pathname
 LISTDELETED=Boolean
 RECURSIVE=Boolean
 GENHASHES=Boolean/>
<SCRIPT>
 perlcode
</SCRIPT>
</BLUEPIPE>

A Bluepipe pattern begins with the tag <BLUEPIPE>, which defines the name of the pattern. The
pattern name is used as the primary filename for the log generated during pattern execution. The DIR
operation appends a target directory to the list of directories used by the FINDFILE operation. If PURGE
is specified as the TARGET value in the <DIR> tag, then the current list of directories is cleared. FIND-
FILE is used to check for the existence of one or more files by name or MD5 hash value (defined by the
ID value in each <FILE> tag). The pathnames or MD5 hashes are searched for in each directory specified
in the target directory list (built using DIR operations). A number of options control the behavior of the
FINDFILE operation:

 USEHASHES determines whether filenames or hashes are used to locate files.
 LOCALDIR specifies a local directory (on the Bluepipe client) where retrieved files should be
stored.

 If RECURSIVE is true, then target directories are searched recursively.
 If RETRIEVE is true, then matching files are retrieved and stored on the Bluepipe client. The
value of RETRIEVE in each <FILE> tag overrides the <FINDFILE> RETRIEVE value.

 MINSIZE and MAXSIZE define the file size limits for retrieved files. If specified, no file
smaller than MINSIZE or larger than MAXSIZE will be retrieved.

The files to be discovered are specified using a sequence of <FILE> tags. Each defines a filename
(or hash value, if USEHASHES is true), specifies whether the file should be retrieved if it is found, and
states whether deleted files should be matched. The default behavior for FINDFILE is to check for the

 7

existence of matching files and indicate matches in the pattern log; the MSG value can be customized to
override the default log file message for matches. Occurrences of “%s” and “%h” in the message are re-
placed with the filename and hash value, respectively, for matching files. Note that MSG in the <FILE>
tag overrides the global MSG in the <FINDFILE> tag.

The GREP operation searches a file for a keyword or regular expression using Unix grep. If the file
matches, then the value of MSG is written to the pattern log. Because GREP does not use the target di-
rectory list created by DIR commands, the value of FILE should be a complete pathname. We are cur-
rently investigating parsing of Microsoft Windows registries from Bluepipe; for now, GREP can be used
to perform simple key searches against the registry files. A simple example is examined in Section 3.5.

LISTPARTITIONS is used to request a detailed list of secondary storage devices and associated par-
tition tables on the target machine. If GENHASHES is true, then an MD5 hashes is computed for each
raw disk device on the target. The value of LOCAL specifies a pathname for a text file on the Bluepipe
client for storage of the partition information.

LISTDIR generates a detailed listing of a specified directory, which is stored in a text file on the
Bluepipe client; the pathname of this text file is defined by the value of LOCAL. If LISTDELETED is
true, then deleted files are also included in the directory listing. RECURSIVE governs whether a recur-
sive directory listing is generated, while GENHASHES controls the generation of MD5 hashes for each
file in the specified directories. Note that GENHASHES can be extremely time-consuming on deeply
nested directories with large numbers of files.

Finally, we support embedded Perl scripts via the SCRIPT operation. Patterns involving scripts will
need to be certified to ensure verifiability. Our pattern language is still under development; as new inves-
tigatory needs are identified, the language will be expanded.

3.6 Sample Bluepipe Patterns
In this section a few simple Bluepipe patterns are presented, to illustrate basic concepts. The follow-

ing pattern, named “checkmessenger”, determines if one or more messenger programs are installed on a
target machine running Windows XP by performing keyword searches against the Windows registry:

<BLUEPIPE NAME=”checkmessenger”>
<GREP
 SEARCH="Jabber Messenger"
 FILE=”/WINDOWS/system32/config/SOFTWARE”
 MSG="Jabber messenger installed."
/>
<GREP
 SEARCH="msnmessenger"
 FILE=”/WINDOWS/system32/config/SOFTWARE”
 MSG="MSN messenger installed."
/>
<GREP
 SEARCH="AOL Instant Messenger”
 FILE=”/WINDOWS/system32/config/SOFTWARE”
 MSG="AOL messenger installed."
/>
</BLUEPIPE>

Execution of this pattern on a target machine yielded the following log:

Beginning execution for pattern "checkmessenger".
GREP cmd, key = "Jabber Messenger", target =
"/WINDOWS/system32/config/SOFTWARE".
Jabber messenger installed.

 8

GREP cmd, key = "msnmessenger", target = "/WINDOWS/system32/config/SOFTWARE".
MSN messenger installed.
GREP cmd, key = "AOL Instant Messenger", target =
“/WINDOWS/system32/config/SOFTWARE”.
AOL messenger installed.
Pattern processing completed.
Sending pattern log. Remote filename is "checkmessenger.LOG".

The following pattern, named “partitions”, generates a drive and partition list for the target machine,
with MD5 hashes computed for each raw attached drive. The drive list is written to a file “drives.txt” on
the client side.

<BLUEPIPE NAME=”partitions”>
<!-- get a lot of drive/partition info-->
<LISTPARTITIONS LOCAL=”drives.txt”

GENHASHES=TRUE/>
</BLUEPIPE>

The target machine had a single IDE hard drive, with five partitions and at least two operating sys-
tems, illustrated by the contents of the file “drives.txt”:

hda
Model Number: IC25T060ATCS05-0.
Serial Number: CSL800D8G3GNSA
device size with M = 1024*1024: 57231 Mbytes

Partition table:

Disk /dev/hda: 240 heads, 63 sectors, 7752 cylinders
Units = cylinders of 15120 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hda1 1 6173 46667848+ 7 HPFS/NTFS
/dev/hda2 7573 7752 1360800 1c Hidden Win95 FAT32 (LBA)
/dev/hda3 * 6174 7364 9003960 83 Linux
/dev/hda4 7365 7572 1572480 f Win95 Ext'd (LBA)
/dev/hda5 7365 7572 1572448+ 82 Linux swap

MD5 hash for drive: 463e65ec8d9f51bdd17c0347243f467b

The following pattern, named “findcacti”, searches for pictures of cacti using a hash dictionary. A
single target directory is specified, /pics, which is searched recursively. Files that match are retrieved and
stored on the client in a directory named “cactus”. No file size restrictions are imposed. The %s and %h
placeholders in the message will be replaced by the filename and hash value of each matching file.

<BLUEPIPE NAME=”findcacti”>
<!-- find illegal cacti pics using MD5 hash dictionary -->
<DIR TARGET=”/pics/” />
<FINDFILE
 USEHASHES=TRUE
 LOCALDIR=”cactus”
 RECURSIVE=TRUE
 RETRIEVE=TRUE
 MSG="Found cactus %s with hash %h ">
<FILE ID=3d1e79d11443498df78a1981652be454/>

 9

<FILE ID=6f5cd6182125fc4b9445aad18f412128/>
<FILE ID=7de79a1ed753ac2980ee2f8e7afa5005/>
<FILE ID=ab348734f7347a8a054aa2c774f7aae6/>
<FILE ID=b57af575deef030baa709f5bf32ac1ed/>
<FILE ID=7074c76fada0b4b419287ee28d705787/>
<FILE ID=9de757840cc33d807307e1278f901d3a/>
<FILE ID=b12fcf4144dc88cdb2927e91617842b0/>
<FILE ID=e7183e5eec7d186f7b5d0ce38e7eaaad/>
<FILE ID=808bac4a404911bf2facaa911651e051/>
<FILE ID=fffbf594bbae2b3dd6af84e1af4be79c/>
<FILE ID=b9776d04e384a10aef6d1c8258fdf054/>
</FINDFILE>
</BLUEPIPE>

The log file generated by executing the “findcacti” pattern on one target machine follows. Notice

that the DSC00051 and bcactus5 image files have identical content.

Beginning execution for pattern "findcacti".
DIR cmd, added "/pics".
FINDFILE cmd.
Found cactus /pics/BBQ-5-27-2001/DSC00008A.JPG with hash 6f5cd6182125fc4b9445aad18f412128
Found cactus /pics/BBQ-5-27-2001/DSC00009A.JPG with hash 7de79a1ed753ac2980ee2f8e7afa5005.
Found cactus /pics/CACTUS_ANNA/DSC00051.JPG with hash 3d1e79d11443498df78a1981652be454.
Found cactus /pics/GARDEN2002/bcactus5.JPG with hash 3d1e79d11443498df78a1981652be454.
Pattern processing completed.
Sending pattern log. Remote filename is "findcacti.LOG".

4 Evaluation
To complete our discussion, we compare our efforts with those of several leading systems using the

set of design requirements. We place the related systems in two broad categories based on their funda-
mental approach toward the forensic analysis. As the following discussion will show, our approach pre-
sents a distinct category that complements the other two and adds some unique capabilities to address the
problems of on-the-spot investigation that are not present in other systems.

4.1 Related Work
A large number of high-quality commercial and open-source tools exist for performing computer fo-

rensics investigations. While their specific capabilities vary, most are based on the image-then-analyze
paradigm, where an exact image of the target is first obtained and all subsequent work is done on that im-
age. We refer to such tools as direct access tools because they provide self-contained environments to
directly examine the digital evidence source.

4.1.1 DIRECT ACCESS (DA) TOOLS
Encase [2] is a powerful package for forensics which runs under Microsoft Windows. Imaging can

be performed using a boot floppy on the target or by removing drives from the target and attaching them
to a forensics workstation. A hardware write-blocker such as FastBloc [5] can be used to minimize the
danger of destroying digital evidence. An interesting feature is the ability to perform the imaging and pre-
view of the evidence over a network cable. Once images are available, forensics operations such as key-
word searches and file/partition recovery can be performed. iLook [6] has a similar set of capabilities
and is free to law enforcement agents. The Forensics Toolkit (FTK) [3] by AccessData takes a different
approach and is built on a database model. An extensive analysis of drive images is performed immedi-
ately after the imaging process, which can be very time-consuming, but subsequent operations, such as
keyword searches, determining which deleted files can be recovered, how many graphics files are present,
etc. are virtually instantaneous. SMART [7] is a Linux-based counterpart to Encase, FTK, and iLook.
Open source tools such as The Sleuthkit and Autopsy [1] have similar capabilities.

 10

In summary, DA tools are geared primarily towards facilitating the process of evidence collection in
a lab setting by an experienced investigator. Their operation is largely batch-oriented with the investigator
sequentially submitting queries and waiting for replies.

4.1.2 MEDIATED REMOTE ACCESS (MRA) TOOLS
MRA tools are designed to leverage the existing network infrastructure to provide remote access

and/or monitoring of computer systems while the systems are ‘live’ and performing their normal tasks.
We refer to existing systems of this class as utilizing mediated remote access because they rely on stan-
dard operating system (OS) services and existing communication infrastructure (perhaps with some addi-
tions/modifications) to perform their work.

 The Mobile Forensics Platform (MFP) [8] allows forensics experts to perform investigations of live
machines from a remote location. A remote investigator can audit logs, capture network traffic and other
digital evidence, and determine what further steps should be taken, all without hands-on contact with the
machines under investigation. The Forensics Server Project (FSP) [10] is related to MFP in that it allows
collection of data from a live machine by automating data collection, file copying, and hashing opera-
tions.

Command-line tools, such as netcat [9] or ssh, are also often used for remote access to machines un-
der investigation. Drive imaging and other operations can be performed remotely using these tools, but
require significant expertise on the part of the examiner.

In summary, MRA tools allow remote examination of live systems that already have an appropriate
communication infrastructure in place. In some cases, like MFP and FSP, additional pieces of the infra-
structure must be preinstalled on site. Unlike DA tools, MRA tools rely on existing OS services, such as
an authentication server, to perform their work. However, they also allow for additional information, such
as real-time CPU/network/file system activity to be captured that it unavailable to DA tools.

4.2 Comparative Evaluation
In the context of the systems described in the previous section, we would classify our system—

Bluepipe—as representative of a class of system we would call autonomous remote access (ARA) tools.
Such tools, like MRA tools, allow remote examination of the target system, however, unlike MRA sys-
tems, they provide their own autonomous communication infrastructure. Like DA tools, ARA systems
have direct access to the target, however, their primary purpose is preliminary screening for evidence
rather than an exhaustive examination.

For the rest of this section, we present a requirement-by-requirement evaluation of the three classes
of systems discussed in this paper and compare their advantages and shortcomings.
 Verifiability. DA systems ensure verifiability in a straightforward manner by working on a separate

copy of the target media. The copying process itself can easily be certified by a third party (e.g.,
NIST) and the entire evidence collection process can easily be explained to a judge/juror with no
technical background. Bluepipe provides a similar level of assurance although the technical means are
slightly different.
Our system is based on a read-only distribution of Linux (which mounts user data read-only as well),
which trivially guarantees that the original is untainted. Third-party certification should not be an is-
sue as the read-only property is straightforward to verify and it should be easy to explain to non-
experts.
Arguably, the behavior of MRA tools is inherently the hardest to certify for the simple reason that
they work in an environment of multiple active processes and may rely on some of them for their own
correct operation. Hence, to demonstrate verifiability, the investigator may have to demonstrate that
the underlying OS services have not been compromised. From a theoretical point of view, this would
be a difficult task and, even if possible, it appears unlikely that the logical reasoning behind it could
be satisfactorily explained to non-experts. As already pointed out, some evidence can only be col-

 11

lected at run time so the credibility of such evidence would likely rest with convincing the court that
the tools follow a strict procedure and produce predictable results rather than a formal proof of cor-
rectness.

 Portability. Neither DA nor MRA tools have been expressly designed for portability—DA tools as-
sume a lab setting whereas MRA ones require an advance setup. In contrast, Bluepipe treats portabil-
ity as a central requirement and our prototype implementation clearly demonstrates that point. Our
server can examine numerous file systems, our client can run on both PDA and laptops, and out sys-
tem can utilize either Bluetooth or 802.11 wireless networking. Taken together, these features allow
an investigator to start examining a target machine within a few minutes.

 Usability. The main conceptual difference between our work and other systems is that we aim to
make Bluepipe easy to use by non-experts by providing a point-and-click interface for connecting to
target machines, executing patterns, and gathering evidence. In contrast, most existing system aim to
provide as much lower-level details to the user as possible. While this is ultimately needed in an in-
vestigation, it also limits the applicability of the tool in the everyday practice of regular law enforce-
ment officers.

 Cost efficiency. In our prototype implementation, we have demonstrated that the architecture can be
supported on commodity, off-the-shelf components and is, therefore, very affordable from an eco-
nomic standpoint. The cost of the other systems varies significantly and ranges from freely available
tools to relatively costly hardware/software commercial solutions targeted at the corporate market.

 Multi-user capabilities. To the best of our knowledge, our architecture is the only one that is explic-
itly designed to accommodate the needs of real-time collaboration for on-the-spot investigation. Other
systems provide some limited support for asynchronous collaboration by placing all results in a data-
base, which in turn could potentially by accessed by multiple users.

 Currently, Bluepipe allows remote access to be gained via the proxy and thereby queries to be exe-
cuted both by the on-the-spot investigator and a remote expert. Our ongoing efforts are the design and
implementation of a collaborative protocol that will considerably expand the capabilities with real-
time support for collaborative editing and viewing of queries.

 Scalability. Clearly DA tools do not satisfy the scalability requirement as they are designed exclu-
sively for use by a single investigator on a single target. RMA systems address scalability in that they
allow entire networks to be monitored in real time although it does appear that the current generation
of RMA tools supports the concurrent examination of multiple targets.

 Bluepipe’s approach to human scalability is to make it possible and affordable for the tool to be used
by non-expert to perform routine inquires without the need for a step-by-step intervention of forensics
experts in routine queries. Our design provides for a proxy/coordination server that allows multiple
queries to be synchronized and executed in parallel on multiple targets, thereby ensuring system scal-
ability. The prototype implementation of these features is one of the subjects of our ongoing efforts.

 Extensibility. For commercial products, it is somewhat difficult to judge their level of extensibility as
the internal details of their design are proprietary. In contrast, we are developing a system around a
set of protocols that allows maximum flexibility and extensibility with respect to the different com-
ponents that can be plugged in and out.

5 Conclusions and Future Work
The traditional digital investigation process involves a few serious problems that can be alleviated by

a preliminary, on-the-spot phase of investigation. These problems include cooperative issues, where us-
ers might be reluctant to allow imaging or seizure of their systems but would be willing to allow a less
invasive “look around”; and practical issues, covering seizure and proper care of large numbers of com-
puter systems. In this paper we discussed requirements for on-the-spot investigations, presented the
Bluepipe architecture, which satisfies these requirements, and discussed our prototype implementation.

 12

We also compared Bluepipe with the capabilities of existing systems and showed that our approach is
better suited for the specific needs of on-the-spot forensics.

In the context of our original scenarios, DA forensic tools are only adequate for the screening of evi-
dence in the SOHO scenario and clearly do not measure up to the needs of bigger investigations. At the
same time, MRA tools are likely to be used only in a corporate environment where the relatively high
purchase/maintenance costs are outweighed by the urgency of discovering and recovering from incidents
such as security breaches as quickly as possible.

The inherent limitations of Bluepipe’s approach stem from the simple fact that a person must walk
up to each physical machine and boot it with the appropriate software. In an investigation on a massive
scale, this restriction may become non-trivial to satisfy and the ad-hoc communication infrastructure
could easily become a bottleneck. However, we believe that our approach is viable for the other three
scenarios and offers the highest degree of verifiability.

Bluepipe is a work-in-progress. We are working with members of the Gulf Coast Computer Foren-
sics Laboratory (GCCFL) to test and refine our software and produce a practical and useful piece of soft-
ware. Many of the features of the design have not yet been incorporated into the implementation and our
collaboration with the GCCFL will further help us identify and address the actual needs of investigators.

6 Acknowledgements
The anonymous referees provided useful feedback that significantly improved the quality of the pa-

per, particularly the introductory material. We would also like to acknowledge feedback received at the
2003 Digital Forensics Research Workshop (DFRWS), which helped shape the current version of our ar-
chitecture.

7 References

[1] Sleuthkit and Autopsy, http://www.sleuthkit.org.

[2] Encase forensics software, http://www.encase.com.

[3] Forensics Toolkit (FTK), http://www.accessdata.com.

[4] “Root Over NFS Clients and Server HOWTO,” http://www.linux.se/doc/HOWTO/Diskless-root-NFS-
HOWTO.html

[5] FastBloc write blocker, http://www.guidancesoftware.com/products/hardware/fastbloc/index.shtm.

[6] iLook Investigator forensics software, http://www.ilook-forensics.org/.

[7] SMART forensics software, http://www.asrdata.com/SMART/.

[8] F. Adelstein, “MFP: The Mobile Forensics Platform,” Proceedings of the 2002 Digital Forensics Research
Workshop, http://www.dfrws.org.

[9] GNU Netcat, http://netcat.sourceforge.net.

[10] The Forensics Server Project, http://patriot.net/~carvdawg/fsproj.html.

[11] Simple Object Access Protocol (V1.1), http://www.w3.org/TR/SOAP/.

 13

http://patriot.net/~carvdawg/fsproj.html
http://www.w3.org/TR/SOAP/

	Introduction
	Usage Scenarios
	Technical Requirements

	The Basic Bluepipe Architecture
	Prototype Implementation
	Server-side
	Client-side
	Bluepipe Proxy
	Bluepipe Protocol
	Bluepipe Patterns
	Sample Bluepipe Patterns

	Evaluation
	Related Work
	Direct Access (DA) Tools
	Mediated Remote Access (MRA) Tools

	Comparative Evaluation

	Conclusions and Future Work
	Acknowledgements
	References

