

A Reliable Extension to the ODMRP Ad Hoc
Multicast Protocol

Lawrence Klos, Golden G. Richard III (lklos@uno.edu, golden@cs.uno.edu)
Department of Computer Science

University of New Orleans, New Orleans, LA 70148

 Abstract

In this paper an enhanced reliability protocol, R-ODMRP,
added to the ODMRP multicast ad hoc protocol is
described. This NACK based protocol increases overall
data packet delivery by adding data storage and
retransmission operations coordinated by the multicast
source. Storage responsibilities are assigned to individual
nodes based on localized ‘neighborhoods’ with minimal
spanning hopcount, within the receiver group. A
description is included of the mechanism the source uses to
discover and partition all group members into
neighborhoods. Each neighborhood stores a sliding
window of the full set of data, keeping resend requests and
replies localized to one portion of the overall network,
reducing network overhead. Simulation results are
presented that reflect the enhanced reliability
characteristics of the protocol. A discussion is included
clarifying the competing metrics and tradeoffs in providing
reliability.

Keywords: Ad Hoc, Multicast, Reliable, ODMRP.

1 Introduction
d hoc networks consist of sets of mobile wireless
nodes communicating with no fixed infrastructure

support. Communication occurs on a node to node
basis, with the links established between nodes
forming the overall ad hoc network. Applications for
ad hoc networks range from an informal collection of
conference participants in a ballroom, to soldiers
organizing in a battlefield or rescuers coordinating
efforts on a remote mountaintop. Group
communication is a natural extension of ad hoc
communication. For group communication, reliability
is often an important issue: in situations such as

rescue operations, missed messages can have critical
consequences.

2 Reliable Group Communication
Reliable group communication research has a
relatively long history in wired networks. Reliable
communication guarantees in wired networks begin
with the notion that all nodes in a group will
eventually receive all data packets. The Dynamic
Group Membership model[1] allowed for nodes in
wired networks to join and leave a group at will, with
reliable communication guarantees enforced. It is
beneficial to understand this model, as the necessity
for nodes to unpredictably join and leave an ad hoc
group is even greater, due to network partitions caused
by node mobility. In wired group communication,
research has differentiated between sender based
(ACK) and receiver based (NACK) responsibility for
message delivery. In a receiver based model, a clear
advantage is that the list of group members required by
the Dynamic Group Membership model is not
necessary. Receivers take on the responsibility for
NACKing missed packets themselves. In wired
multicast this is an invaluable advantage, avoiding
ACK implosions and the large overhead needed to
maintain the dynamic membership list. In ad hoc
networks this advantage becomes a necessity: resource
constraints make it infeasible to maintain and
continually update a membership list.

To date, it is not feasible to implement reliable
communication protocols in ad hoc networks. It is not
even possible to guarantee delivery of all data packets
to all nodes. This paper is an initial study of factors
involved in eventually reaching 100% reliability.
Generally, two factors are responsible for missed
messages in ad hoc networks: one is network link
contention (whether the contention results from

A

mailto:lklos@uno.edu

control overhead or data forwarding efficiency
overhead), and the second is non existent links. The
first factor is more common in dense networks, while
the second factor occurs increasingly as density
lessens. The reliability of most ad hoc multicast
protocols are affected by these two factors, because
most protocols rely on best-effort delivery of packets.
Some mechanism must then be added to enhance
reliability, if the eventual goal is 100% reliability.

A mechanism of storing and resending data packets
is one potential solution to both factors. Whether
packets are undelivered due to link contention or
missing links, future resends of packets allow
improved chances of eventual delivery. Since a
reliability component will increase network link
contention, the design goal of such a component is to
increase this contention minimally, causing the least
number of additional dropped packets. To achieve this
goal, the control and data packet resend traffic
overhead of the reliability component must be as low
as possible.

In this paper, the strategy taken was to implement a
receiver based model for data delivery. ODMRP was
taken as the underlying multicast group
communication protocol, since it is well documented
and simulations [6] have shown it to have a high data
delivery ratio in comparison with other ad hoc
multicast protocols. Mechanisms for message storage
and retransmission were added, distributing these
responsibilities to all group members, with the source
of each data stream being responsible for storage
coordination. As the network grows, replicated data
storage is assigned to an expanding number of
individual neighborhoods of nodes. This means that
NACK requests/replies of data packets will require
packet traversal of fewer and fewer hops to fulfill,
reducing network overhead and data delivery latency.

The choice of the source node as coordinator for
these responsibilities is not intuitive. It is common
wisdom that ad hoc multicast protocols are distributed
algorithms, and centralized components are to be
avoided. However, several factors suggested that this
centralized mechanism could be successful:
• For any ad hoc protocol, an implicit centralized
component, the data source, is unavoidable. If the
central source of data dies or is partitioned, there will
be no data to reliably deliver.
• ODMRP, while categorized as non-centralized, still
relies on the near-centralized two step process of join
query/reply to establish datapaths. This mechanism
closely resembles R-ODMRP’s mechanism of reliable
join query/reply from a network traffic standpoint,

with the final step of nodes adjacent to the source
sending a packet back to the source removed.

Section 3 presents a brief overview of ODMRP,
section 4 describes R-ODMRP, and section 5 presents
a performance evaluation. Finally, section 6 discusses
related work, section 7 covers future work, and
section 8 concludes the paper.

3 ODMRP overview
ODMRP[5] is a mesh-based on-demand ad hoc
protocol for group communication in ad hoc networks.
Simulations [6] have shown it to be very reliable
relative to other ad hoc multicast protocols. It performs
scoped flooding of data packets to all group members
in the network by establishing a ‘forwarding group’ of
network nodes between a source and group members.
Timeout driven periodic route refreshes update the
broken links due to node mobility or resource changes.
Route setup and refresh both consist of two phases: a
Request and Reply phase.

3.1 Route Setup – Request Phase
When a source has multicast data packets to send but
no knowledge of routes to receivers, it piggybacks the
first data packet onto a “Join Query” packet, adds its
IP address as source, and broadcasts it to the network.
Each node receiving the Join Query packet will store
the source IP address and packet ID for future
duplicate packet detection, add the IP addresses of the
upstream node and originating source to its routing
table, add its own IP address into the last hop IP
address field, and rebroadcast it downstream. The Join
Query packet eventually floods to reach all nodes.

 3.2 Route Setup – Reply Phase

A group member, on receiving a Join Query packet,
first completes the Join Query processing described
above, then initiates a “Join Reply” packet. The node
pulls all source and next hop IP addresses for the
group from its routing table, add its own IP address
into the previous hop field, and broadcasts the Join
Reply upstream. Each neighbor node receiving this
packet compares its IP address to the series of next
hop IP address entries, and if one matches, it is on the
forwarding path between source and receiver. The
node sets its Forwarding Group Flag, looks into its
own routing table entries for the group ID and builds
its own Join Reply packet to broadcast upstream.

3.3 Forwarding, Maintenance and Unicasting
 When a node receives a multicast data packet, it
checks the setting of its Forwarding Group Flag. If the
flag is set and not yet expired, the node is a forwarding

group member for the group, and will rebroadcast the
packet to its neighbors.

Periodically, the source will refresh routes with
another Join Query packet. All forwarding groups are
then reset to the new network topology. A soft state
approach is taken for group membership. Once a
source has no data to multicast, it stops sending Join
Query packets. All forwarding nodes eventually
timeout and revert to non-forwarding status for that
source. If a group receiver wants to leave the group it
stops sending Join Replies in response to Join Queries.

Using the same Join Query/Reply protocol with a
unicast IP address as the destination, a unicast sender
can discover a route to a receiver. The forwarding
group route created by the unicast operation of
ODMRP is a single path rather than a mesh.

4 Reliable ODMRP
 In R-ODMRP the responsibility for data packet
storage and retransmission is assigned to all members
of the multicast group, with the source of each data
stream coordinating responsibilities. The full set of
group members are partitioned by the source into sets
of local neighborhoods, with each neighborhood
storing a sliding window of all data packets. The
source sets the number of nodes per neighborhood and
determines the data cache size required at each node.
When receivers Nack missed packets, the local
neighborhood nodes with the cached packets will
unicast them to the Nacking node.

In R-ODMRP, When a source initially sends out a
Join Query, it becomes a Reliable Join Query
(RJQuery) packet. The RJQuery packet has a timeout
value attached. Once the RJQuery packet is sent, each
node receiving it will decrement this timer value by a
preconfigured “two hop time” before sending the
RJQuery downstream. After the RJQuery timer expires
at each node, each will send a Reliable Join Reply
(RJReply) back upstream. If a node with an expiring
timer is not a receiver, it will send an RJReply only if
it receives other RJReplies from downstream.

Each RJReply contains a 2D table, known as the
Network Datapath table. When a node receives
RJReplies from downstream nodes, it stores their
Network Datapath table blocks in its own table sorted
relative to other received blocks with the topmost
block having the longest datapath. On timer expiration,
just before the table is sent upstream in an RJReply,
each table entry is shifted such that entry (x, y)
becomes entry (x, y + 1), emptying the leftmost
column, column 0. The node stores an entry for itself

in entry (0,0) containing its id, branch count (the
number of received RJReplies received), and receiver
status. It then forwards the table upstream in its own
RJReply. Figure 1 shows the datapath tables for
several nodes after processing downstream tables.

The end result of the RJQuery/RJReply phase is that
the source obtains a full positional listing of all
receivers and forwarding group members in the
network. RJQuery/Reply operations occur
periodically, but at a lower frequency than the

S1

R13

14

R12

R15

R16
R10

R11

9

R8

R6

R7

5

R4

R3

R2

S1 R4 5 R7 R8
R6

9 R10
R11

R12 14 R15
R16

R13
R2 R3

R4 5 R7 R8
R6

9 R10
R11

R12 14 R15
R16

R13

R2 R3

Figure 1: Network Datapath Table creation.

standard Join Query/Reply operation. The source will
then determine the “nodes per neighborhood” count,
and, use the Network Datapath table to partition all
receiver nodes into local neighborhoods with a
“Source Neighborhood” Algorithm. The source
assigns data packet storage responsibilities so that the
set of nodes within any given neighborhood will store
the full set of data packets in sliding window fashion.

4.1 Packet Storage

On the next data packet after a Reliable Join Query,
the source adds a table defining the range of packet
sequence numbers each receiver in each neighborhood
is responsible for storing. Each receiver then begins
storing its share of data packets. This recovery scheme
does not depend on which node stores the packets,
only that each neighborhood stores them somewhere.
 As nodes leave the group, their storage
responsibilities are reassigned on new RJQuery/Reply
rounds. However, as more and more nodes join over
time, more neighborhoods are created and duplicate
storage responsibilities are assigned. The individual
neighborhoods storing the duplicate packets become
smaller and smaller, relative to the overall network.

 4.2 Packet Retransmission

The second responsibility, that of data packet
retransmission, will be initiated by a receiver node
noticing a gap in received data packets. It will
broadcast a Resend Request packet to its

neighborhood, with a local time-to-live scope, listing
the packets needed by sequence number. The requester
will give its IP address for unicast replies. A
neighborhood node, upon receiving the packet, will
check its storage for the requested sequence numbers,
unicasting found data packets back along a single path.
If the requesting node receives an incomplete reply or
no reply, it retains the gap sequence numbers, sending
them out with the next Resend Request.

As the number of group members in a network
grows, the size of local neighborhoods (and hopcount
of Resend Request/Replies) becomes smaller relative
to the overall network.

The Source Neighborhood Algorithm is the
mechanism the source node uses to partition receivers
into neighborhoods, and to assign data packet storage
responsibilities to all receivers in each neighborhood.
The neighborhood partitioning algorithm is based on
minimizing the hopcount between the receivers within
a neighborhood, for each neighborhood in the overall
network. The input to this algorithm is a Network
Datapath table, with each entry consisting of a
structure with the following elements:
• Address: the node’s individual id.
• Branch_Count: the number of table rows (i.e.
downstream branches) extending from this node. This
is the same as the count of received RJReplies.
• Receiver_Status: a boolean indicating if this node is
a multicast receiver or forwarder.

Key: Node Id Rcvr/Fwdr
Branch Ct

S1 F R4 R 5 F R7 R R8 R
3 2 2 1 0

R6 R
0

9 F R10 R
2 0

R11 R
0

R12 F 14 F R15 R
2 2 0

R16 R
0

R13 R
0

R2 R3 R
1 0

Figure 2: Partitioning of Network Datapath Table.

Figure 2 shows the Network Datapath Table in the

source node for the network shown in Figure 1, with
receivers partitioned into neighborhoods as a result of
this algorithm using[receivers per neighborhood] = 3.
The algorithm works by taking the most remote node
in the topmost block (the block with the longest

datapath to the farthest receiver in the network) and
stepping backward along the row, partitioning
receivers into the first neighborhood. Once a branch
node is reached, the algorithm steps down into the
proper branch row, moves to its end, then works back
toward the source, again partitioning receivers into the
first neighborhood. During this process the algorithm
tracks neighborhood hopcount, while remaining within
an individual block. Once enough receivers within the
first block are partitioned into full neighborhoods,
processing moves on to the next block.

After receivers in each block are partitioned into
full neighborhoods there will be remainder nodes
potentially from each block. Remainder nodes are then
partitioned into neighborhoods. Given that remainder
nodes will be those closest to the source, remainder
node neighborhoods should also have a minimal
hopcount between members.

4.3 Source Neighborhood Algorithm

 After all receiver nodes are partitioned into
neighborhoods, the neighborhoods are entered into a
Storage Responsibility table, with each row
containing an individual neighborhood, and data
packet sequence number storage implicitly assigned by
column.

Pkts 1-33 Pkts 34-66 Pkts 67-100 Nbrhd Hopct
R8 R7 R6 3
R4 R10 R11 2
R15 R16 R12 2
R13 R3 R2 4
Figure 3: Storage Responsibilities

Max hopcount per neighborhood is stored in this table
at the end of each row; see Figure 3 for the
neighborhood partitioning and storage assignments for
the Network Datapath table partitioned in Figure 2.
This Storage Responsibility Table is then added to the
next outgoing Join Query packet and sent out to all
receivers. Each receiver, upon obtaining this packet,
parses out its neighborhood spanning hopcount and
storage responsibilities, and begins storing packets.

5 Protocol Performance Evaluation
R-ODMRP was implemented within the ns-2 network
simulator[3], developed by the University of
California, Berkeley, and the VINT project, with
Carnegie Mellon’s Monarch Project mobile and
wireless ns-2 extensions [10] incorporated. The ns-2
simulator is publicly available, and commonly used in
networking research. [2] provides a comprehensive
description of the software layers and the IEEE 802.11
MAC protocol used in these simulations. One reason
for ns-2’s popularity is the detailed manner in which
the layers of the communication hierarchy are
modeled, and the configurability at each layer.

The ODMRP and R-ODMRP simulations all executed
with identical randomly generated baselines of
network traffic and node movement files to more
accurately compare performance. This baseline
consisted of five node movement scenarios and six
traffic pattern scenarios. All scenarios established fifty
mobile nodes with a single node as multicast source
within a 1000m x 1000m area. The radio propagation
range for each node was 250 meters, and the channel
capacity was 2 Mb/sec. Each simulation executed for
600 seconds of simulated time. Once all nodes joined
the group the multicast source started sending 512
byte packets with a constant bit rate of 3 packets per
second. The traffic pattern scenarios had 25, 30, 35,
40, 45 and 49 receiver nodes respectively.

30 simulation runs each for ODMRP and R-
ODMRP. A total of 60 simulations were performed.
This baseline was chosen for initial results because
simulations [6] have shown that ODMRP performs
best in conditions of relatively good network
connectivity, low traffic load, and speed, and any
protocol with the goal of increasing reliability would
have to outperform it under these conditions. R-
ODMRP would seem to have its greatest advantages in
sparse networks with frequent partitions, however. For
ODMRP and R-ODMRP, the ODMRP parameters
were set to 3 seconds for the Join Query flood interval
and 9 seconds for the forwarding state timeout, the
values used by ODMRP’s creators in their simulation
studies. R-ODMRP set a flag in every fourth Join
Query packet, turning it into a Reliable Join Query
packet. The node count per neighborhood for R-
ODMRP was 3, and nodes were set to store a
maximum of 500 data packets, in Round Robin mode.

The performance of ODMRP and R-ODMRP were
compared according to the following metrics.
• Packet Delivery Ratio: the number of multicast data
packets from a source correctly received over the
number that should have been received.
• Ratio of Data and Control Packets per Delivered
Data Packet: measures protocol routing efficiency.
• Forwarding Efficiency: the average number of times
each data packet was transmitted.

Initial experiments lead to modifications of the basic
mechanisms of R-ODMRP to produce better end
results. Originally, the time-to-live hopcount for a
resend request packet was set to the maximum distance

between nodes within a given neighborhood. This
produced average results. Some data packets that
would have been correctly delivered under ODMRP
were dropped due to channel contention with the
Resend Requests, causing the R-ODMRP portion of
the protocol to work harder to fill the gaps, leading to
further network contention. In the end, a TTL of 1
gave best results for Resend Request packets.

5.1 Simulation Details

 5.4 Simulation Results
Figure 4 shows initial results for Packet Delivery
Ratio. The ODMRP protocol alone produced a packet

Pkt Delivery Ratio - ODMRP + RODMRP Protocols,
ODMRP Alone

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

50n25r 50n30r 50n35r 50n40r 50n45r 50n49r

Ne t wor k De nsi t y

Pe
rc

en
t D

el
iv

er
y

ODMRP Port ion of
combined

Rodmrp & ODMRP
Port ions combined

ODMRP Alone

Figure 4: Packet Delivery Ratio.

delivery ratio of 93% to 94%. For the R-ODMRP
protocol (the results of which were broken down into
the ODMRP portion alone, and the R-ODMRP portion
combined with ODMRP), the ODMRP portion
operated between 1% and 1½ % worse than its
standalone counterpart. This represents the decrease in
normal packet delivery attributable to the overhead of
the R-ODMRP portion. With the R-ODMRP portion
combined however, the combination consistently
performed about 4% better overall than ODMRP.

5.2 Evaluation Metrics

The other metrics show the tradeoffs for R-ODMRP.
The Ratio of Data and Control Packets per Delivered
Data Packet, shown in Figure 5, shows an increase for
R-ODMRP. An increase must exist, since the basic
premise is retransmission of previously sent data
packets. The increase shown for R-ODMRP is
manageable however, scaling similarly to ODMRP.

Figure 6 shows the Forwarding Efficiency of both
protocols. Here, R-ODMRP shows worse performance
than ODMRP. Again, this is expected given the basic
premise. Data delivery latency of the two protocols
shows the greatest differential, however. While the
average latency of ODMRP, and the ODMRP portion
of R-ODMRP averaged about 10 ms across all receiver
counts, the extra packets delivered by the Resend

5.3 Initial Experiments

Request/Reply mechanism tended to have a latency of
seconds due to several factors. One is the fact that two
seconds elapse after a gap is noticed before the Resend
Reply packet is triggered, and a second is that a
random delay is added to allow nodes to snoop other
node’s Resend Replies.

Packet Overhead - ODMRP + RODMRP Protocols,
ODMRP Alone

0

0.5

1

1.5

2

2.5

3

50n25r 50n30r 50n35r 50n40r 50n45r 50n49r

Ne t wor k De nsi t y

Tx
 P

kt
s

/ R
x

D
at

a
Pk

ts

ODMRP Port ion of
combined

Rodmrp & ODMRP
Port ions combined

ODMRP Alone

Figure 5: Ratio of Data+Control Pkts per Delivered

Data Pkt.
In dense networks future experiments will fine tune

the tradeoff between latency and increased channel
contention from frequent Resend Requests, to bring
this latency down. In sparse networks this is less of an
issue, since network partitions will put minimum
possible boundaries on latency, making the time
required for Resend Requests/Replies not an issue.

Forwarding Efficiency - ODMRP + RODMRP
Protocols, ODMRP Alone

0

5

10

15

20

25

30

35

40

50n25r 50n30r 50n35r 50n40r 50n45r 50n49r

Ne t wor k De nsi t y

Tx
 P

kt
s

/ R
x

D
at

a
Pk

ts

ODMRP Port ion of
combined

Rodmrp & ODMRP
Port ions combined

ODMRP Alone

Figure 6: Forwarding Efficiency

The competing metrics involved in enhancing

reliability for ODMRP have been clarified as a result
of this work. Four central factors balance against each
other: Packet Delivery Ratio (“Reliability”), Ratio of
Data and Control Packets per Delivered Data Packet
(“Control Overhead”), Forwarding Efficiency
(“Forwarding Overhead”) and Data Packet Latency to
all Receivers (“Latency”). When the R-ODMRP

portion is added to ODMRP, reliability increases,
latency increases and network traffic overhead
increases. A successful reliability component will
increase reliability, increase overhead by an
‘acceptable’ amount (i.e. low enough so that the
resulting additional dropped packets can be
overcome), and increase data packet latency as
minimally as possible. Of the three factors, latency can
be the least critical when increased reliability is
desired, since the overhead metrics are more tightly
linked to the reliability metric.In multicast ad hoc
protocols, reliability falls off sharply as node density
becomes sparser. It is expected that the sparser the
network, the more successful a reliability component
such as R-ODMRP will be in achieving its goals.

6 Related Work
Research has begun on reliability in multicast ad hoc
networks in recent years. Mechanisms can be broken
down into three categories; congestion control, data
packet retransmission and forward error correction.

RALM[9] is a reliable ad hoc multicast protocol that
works by enforcing error and congestion control
similar to TCP in wired networks. Reliable data
delivery is guaranteed to one group member at a time,
round-robin, by requiring the source to select a
neighboring group member for data transmission. The
neighboring member will reply with either an ACK or
NACK. This feedback from the neighbor is used to
initiate retransmission and adjust the source window
size. Here, decreased throughput is the tradeoff for
increased reliability. Another downside is that even
with congestion control, if packets are dropped, they
are resent from the source rather than locally, requiring
more network overhead both for the receiver NACK
and the source retransmit, and requiring the source to
cache all data.

Packet Erasure Recovery[8] uses error correction
codes to provide reliability. Data packets are encoded
and split into fragments with replication, and the
fragments are then transmitted to receivers. If a
certain number of fragments arrive, the data packet is
correctly reassembled. The downside of this approach
is that forward error correction work best when loss
rates are predictable. In ad hoc networks, worst case
behavior for a node to drop packets is unpredictable: a
node may go out of range of the network and stay out
of range. Also, more bandwidth and processing power
is consumed with replicated data transmission.

Hyper flooding [7] is an adaptive technique using
flooding as a base, with modifications to prevent
loops. Received data packets are stored internally by
nodes that record neighbors by listening for and

sending hello messages. Rebroadcasts of stored data
packets occur when a packet is received from a node
that is not on the neighbor list, or when receiving a
new hello message. In these cases, all packets in the
data packet cache are retransmitted. The downside of
this approach is that a greater amount of network
overhead is used, which leads to more channel
contention and data loss. Another disadvantage is the
large amount of data caching at each node.

7 Future Work
 Near term goals include examining the Resend
Request/Reply mechanism to increase scalability for
growing receiver counts in dense networks. A closer
look at packet ratios for each phase of R-ODMRP
should provide information here. Also, examination of
the transmission/reception details of the simulations
will provide further data to close the gap to full packet
delivery. It would be good to examine other network
scenario baselines. For example, sparse networks
would seem to be an area where R-ODMRP could
operate to greatest advantage. A new mechanism for
Resend Requests will be needed for this scenario.

8 Conclusion
 This paper described R-ODMRP, a reliability
protocol overlaid on ODMRP. R-ODMRP consists of
operations to store and retransmit sequenced data
packets between receiver nodes, with overall
functionality coordinated by the source node.
 R-ODMRP has been implemented in the ns-2
simulator and run against a baseline scenario of a
dense network with increasing receiver count, ideal
conditions for the base ODMRP protocol. Results
show that R-ODMRP does outperform ODMRP under
these conditions, but at a cost of an increase in routing
efficiency, forwarding efficiency and data delivery
latency. Future work will determine how the two
protocols compare in less than ideal conditions.

9 References
[1] K. Birman, “Building Secure and Reliable
Network Applications”, Manning Publishing
Company, Greenwich, CT, and Prentice Hall 1997.
[2] J. Broch, D. Maltz, D. Johnson, Y. Hu and J.
Jetcheva, “A Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Routing Protocols”, Proc.
of the Fourth Annual ACM/IEEE International
Conference on Mobile Computing And Networking,
Dallas, TX, Oct. 98.
[3] K. Fall, K. Varadhan, editors, “The ns Manual”,
The VINT Project, UC Berkeley, LBL, USC/ISI, and

XEROX PARC, April 2002. Available at
http://www-isi.edu/nsnam/ns/.
[4] T. Gopalsamy, M. Singhal, D. Panda, P.
Sadayappen, “A Reliable Multicast Algorithm for
Mobile Ad Hoc Networks”, Proc. of the Distributed
Computing Systems Workshops, pp. 563-570,
Vienna, Austria, July 2002.
[5]S.J. Lee, W. Su and M. Gerla, Internet Draft, “On-
Demand Multicast Routing Protocol(ODMRP) for Ad
Hoc Networks”, Jan. 2000. draft-ietf-manet-
odmrp02.txt
[6] S.J. Lee, W. Su, J. Hsu, M. Gerla and R. Bagrodia
“A Performance Comparison Study of Ad Hoc
Wireless Multicast Protocols”, Proc. of IEEE
INFOCOM 2000, Tel Aviv, Israel, March 2000.
[7] K. Obraczka, G. Tsudik, K. Viswanath, “Pushing
the Limits of Multicast in Ad Hoc Networks”, Proc.
of the 21st International Conference on Distributed
Computing Systems, Phoenix, Arizona, April, 2001.
[8] L. Shu, D. Poppe, “Assuring Message Delivery in
Mobile Ad Hoc Networks with Packet Erasure
Recovery”, Proc. of the Distributed Computing Sys.
Workshops, pp 14-19, Vienna, Austria, July 2002.
[9] K. Tang, K. Obraczka, S.J. Lee, M. Gerla, “A
Reliable Congestion-Controlled Multicast Transport
Protocol in Multimedia Multi-hop Networks”, The
5th International Symposium on Wireless Personal
Multimedia Communications, pp 252-256, Hololulu,
USA, October 2002.
[10] “The CMU Monarch Projects wireless and mobility
extensions to ns”, The CMU Monarch Project, August
1999. Available at http://www.monarch.cs.cmu.edu/.

http://www.monarch.cs.cmu.edu/

