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 Abstract 
 
In this paper an enhanced reliability protocol, R-ODMRP, 
added to the ODMRP multicast ad hoc protocol is 
described. This NACK based protocol increases overall 
data packet delivery by adding data storage and 
retransmission operations coordinated by the multicast 
source. Storage responsibilities are assigned to individual 
nodes based on localized ‘neighborhoods’ with minimal 
spanning hopcount, within the receiver group. A 
description is included of the mechanism the source uses to 
discover and partition  all group members into 
neighborhoods. Each neighborhood stores a sliding 
window of the full set of data, keeping resend requests and 
replies localized to one portion  of the overall network, 
reducing network overhead. Simulation results are 
presented that reflect the enhanced reliability 
characteristics of the protocol. A discussion is included 
clarifying the competing metrics and tradeoffs  in providing 
reliability. 
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1 Introduction 
d hoc networks consist of sets of mobile wireless 
nodes communicating with no fixed infrastructure 

support. Communication occurs on a node to node 
basis, with the links established between nodes 
forming the overall ad hoc network. Applications for 
ad hoc networks range from an informal collection of 
conference participants in a ballroom, to soldiers 
organizing in a battlefield or rescuers coordinating 
efforts on a remote mountaintop. Group 
communication is a natural extension of ad hoc 
communication. For group communication, reliability 
is often an important issue: in situations such as 

rescue operations, missed messages can have critical 
consequences. 

 
 

2 Reliable Group Communication 
Reliable group communication research has a 
relatively long history in wired networks. Reliable 
communication guarantees in wired networks begin 
with the notion that all nodes in a group will 
eventually receive all data packets. The Dynamic 
Group Membership model[1] allowed for nodes in 
wired networks to join and leave a group at will, with 
reliable communication guarantees enforced. It is 
beneficial to understand this model, as the necessity 
for nodes to unpredictably join and leave an ad hoc  
group is even greater, due to network partitions caused 
by node mobility.  In wired group communication, 
research has differentiated between sender based 
(ACK) and receiver based (NACK) responsibility for 
message delivery. In a receiver based model, a clear 
advantage is that the list of group members required by 
the Dynamic Group Membership model is not 
necessary. Receivers take on the responsibility for 
NACKing missed packets themselves. In wired 
multicast this is an invaluable advantage, avoiding 
ACK implosions and the large overhead needed to 
maintain the dynamic membership list. In ad hoc 
networks this advantage becomes a necessity: resource 
constraints make it infeasible to maintain and 
continually update a membership list.  

To date, it is not feasible to implement reliable 
communication protocols in ad hoc networks. It is not 
even possible to guarantee delivery of all data packets 
to all nodes. This paper is an initial study of factors 
involved in eventually reaching 100% reliability. 
Generally, two factors are responsible for missed 
messages in ad hoc networks: one is network link 
contention (whether the contention results from 
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control overhead or data forwarding efficiency 
overhead), and the second is non existent links. The 
first factor is more common in dense networks, while 
the second factor occurs increasingly as density 
lessens. The reliability of most ad hoc multicast 
protocols are affected by these two factors, because 
most protocols rely on best-effort delivery of packets. 
Some mechanism must then be added to enhance 
reliability, if the eventual goal is 100% reliability.  

A mechanism of storing and resending data  packets 
is one potential solution to both factors. Whether 
packets are undelivered due to link contention or 
missing links, future resends of packets allow 
improved chances of eventual delivery. Since a 
reliability component will increase network link 
contention, the design goal of such a component is to  
increase this contention minimally, causing the least 
number of additional dropped packets. To achieve this 
goal, the control and data packet resend traffic 
overhead of the reliability component must be as low 
as possible.  

In this paper, the strategy taken was to implement a 
receiver based model for data delivery. ODMRP was 
taken as the underlying multicast group 
communication protocol, since it is well documented 
and simulations [6] have shown it to have a high data 
delivery ratio in comparison with other ad hoc 
multicast protocols.  Mechanisms for message storage 
and retransmission were added, distributing these 
responsibilities to all group members, with the source 
of each data stream being responsible for storage 
coordination. As the network grows, replicated data 
storage is assigned to an expanding number of 
individual neighborhoods of nodes. This means that 
NACK requests/replies of data packets will require 
packet traversal of fewer and fewer hops to fulfill, 
reducing network overhead and data delivery latency. 

The choice of the source node as coordinator for 
these responsibilities is not intuitive. It is common 
wisdom that ad hoc multicast protocols are distributed 
algorithms, and centralized components are to be 
avoided. However, several factors suggested that this 
centralized mechanism could be successful:  
• For any ad hoc protocol, an implicit centralized 
component, the data source,  is unavoidable.  If the 
central source of data dies or is partitioned,  there will 
be no data to reliably deliver. 
• ODMRP, while categorized as non-centralized, still 
relies on the near-centralized two step process of join 
query/reply to establish datapaths. This mechanism 
closely resembles R-ODMRP’s mechanism of reliable 
join query/reply from a network traffic standpoint, 

with the final step of nodes adjacent to the source 
sending a packet back  to the source removed.   

Section 3 presents a brief overview of ODMRP, 
section 4 describes R-ODMRP, and section 5 presents 
a performance evaluation. Finally, section 6 discusses 
related work,  section 7 covers future work, and 
section 8 concludes the paper.  

3 ODMRP overview  
ODMRP[5] is a mesh-based on-demand ad hoc 
protocol for group communication in ad hoc networks. 
Simulations [6] have shown it to be very reliable 
relative to other ad hoc multicast protocols. It performs 
scoped flooding of data packets to all group members 
in the network by establishing a ‘forwarding group’ of 
network nodes between a source and group members. 
Timeout driven periodic route refreshes update the 
broken links due to node mobility or resource changes.  
Route setup and refresh both consist of two phases: a 
Request and Reply phase. 

3.1 Route Setup – Request Phase 
When a source has multicast data packets to send but 
no knowledge of routes to receivers,  it piggybacks the 
first data packet onto a “Join Query” packet, adds its 
IP address as source, and broadcasts it to the network. 
Each node receiving the Join Query packet will store 
the source IP address and packet ID for future 
duplicate packet detection, add the IP addresses of the 
upstream node and originating source to its routing 
table, add its own IP address into the last hop IP 
address field, and rebroadcast it downstream. The Join 
Query packet eventually floods to reach all nodes. 

 
 3.2 Route Setup – Reply Phase 

A group member, on receiving a Join Query packet, 
first completes the Join Query processing described 
above, then initiates a “Join Reply” packet. The node 
pulls all source and next hop IP addresses for the 
group from its routing table, add its own IP address 
into the previous hop field, and broadcasts the Join 
Reply upstream. Each neighbor node receiving this 
packet compares its IP address to the series of next 
hop IP address entries, and if one matches, it is on the 
forwarding path between source and receiver. The 
node sets its Forwarding Group Flag, looks into its 
own routing table entries for the group ID and builds 
its own  Join Reply packet to broadcast upstream. 

3.3 Forwarding, Maintenance and Unicasting
  When a node receives a multicast data packet, it 
checks the setting of its Forwarding Group Flag. If the 
flag is set and not yet expired, the node is a forwarding 



 

group member for the group, and will rebroadcast the 
packet to its neighbors.  

Periodically, the source will refresh routes with 
another Join Query packet. All forwarding groups are 
then reset to the new network topology. A soft state 
approach is taken for group membership. Once a 
source has no data to multicast, it stops sending Join 
Query packets. All forwarding nodes eventually 
timeout and revert to non-forwarding status for that 
source. If a group receiver wants to leave the group it 
stops sending Join Replies in response to Join Queries.   

Using the same Join Query/Reply protocol with a 
unicast IP address as the destination, a unicast sender 
can discover a route to a receiver. The forwarding 
group route created by the unicast operation of 
ODMRP is a single path rather than a mesh. 

4 Reliable ODMRP 
  In R-ODMRP the responsibility for data packet 
storage and retransmission is assigned to all members 
of the multicast group, with the source of each data 
stream coordinating responsibilities. The full set of 
group members are partitioned by the source into sets 
of local neighborhoods, with each neighborhood 
storing a sliding window of all data packets.  The 
source sets the number of nodes per neighborhood and 
determines the data cache size required at each node. 
When receivers Nack missed packets, the local 
neighborhood nodes with the cached packets will 
unicast them to the Nacking node. 

 
 

In R-ODMRP,  When a source initially sends out a 
Join Query, it becomes a Reliable Join Query 
(RJQuery) packet. The RJQuery packet has a timeout 
value attached. Once the RJQuery packet is sent, each 
node receiving it will decrement this timer value by a 
preconfigured “two hop time” before sending the 
RJQuery downstream. After the RJQuery timer expires 
at each node, each will send a Reliable Join Reply 
(RJReply) back upstream. If a node with an expiring 
timer is not a receiver, it will send an RJReply only if 
it receives other RJReplies from downstream. 

Each RJReply contains a 2D table, known as the 
Network Datapath table.  When a node receives 
RJReplies from downstream nodes, it stores their 
Network Datapath table blocks in its own table sorted 
relative to other received blocks with the topmost 
block having the longest datapath. On timer expiration, 
just before the table is sent upstream in an RJReply, 
each table entry is shifted such that entry (x, y) 
becomes entry (x, y + 1), emptying the leftmost 
column, column 0. The node stores an entry for itself 

in entry (0,0) containing its id, branch count (the 
number of received RJReplies received), and receiver 
status. It then forwards the table upstream in its own 
RJReply. Figure 1 shows the datapath tables for 
several nodes after processing downstream tables. 

The end result of the RJQuery/RJReply phase is that 
the source obtains a full positional listing of all 
receivers and forwarding group members in the 
network. RJQuery/Reply operations occur 
periodically, but at a lower frequency than the      
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Figure 1: Network Datapath Table creation. 

 
standard Join Query/Reply operation. The source will 
then determine the “nodes per neighborhood” count, 
and, use the Network Datapath table to partition all 
receiver nodes into local neighborhoods with a 
“Source Neighborhood” Algorithm. The source 
assigns data packet storage responsibilities so that the 
set of nodes within any given neighborhood will store 
the full set of data packets in sliding window fashion. 

4.1 Packet Storage 

On the next data packet after a Reliable Join Query, 
the source adds a table defining the range of packet 
sequence numbers each receiver in each neighborhood 
is responsible for storing. Each receiver then begins 
storing its share of data packets. This recovery scheme 
does not depend on which node stores the packets, 
only that each neighborhood stores them somewhere. 
  As nodes leave the group, their storage 
responsibilities are reassigned on new RJQuery/Reply 
rounds. However, as more and more nodes join over 
time, more neighborhoods are created and duplicate 
storage responsibilities are assigned. The individual 
neighborhoods storing the duplicate packets become 
smaller and smaller, relative to the overall network. 

 
 4.2 Packet Retransmission 

The second responsibility, that of data packet 
retransmission, will be initiated by a receiver node 
noticing a gap in received data packets.  It will 
broadcast a Resend Request packet to its 



 

neighborhood, with a local time-to-live scope, listing 
the packets needed by sequence number. The requester 
will give its IP address for unicast replies. A 
neighborhood node, upon receiving the packet, will 
check its storage for the requested sequence numbers, 
unicasting found data packets back along a single path. 
If the requesting node receives an incomplete reply or 
no reply, it retains the gap sequence numbers, sending 
them out with the next Resend Request.  

As the number of group members in a network 
grows, the size of local neighborhoods (and hopcount 
of Resend Request/Replies) becomes smaller relative 
to the overall network. 

The Source Neighborhood Algorithm is the 
mechanism the source node uses to partition receivers 
into neighborhoods, and to assign data packet storage 
responsibilities to all receivers in each neighborhood. 
The neighborhood partitioning algorithm is based on 
minimizing the hopcount between the receivers within 
a neighborhood, for each neighborhood in the overall 
network. The input to this algorithm is a Network 
Datapath table, with each entry consisting of a 
structure with the following elements: 
• Address: the node’s individual id. 
• Branch_Count: the number of table rows (i.e. 
downstream branches) extending from this node. This 
is the same as the count  of received RJReplies. 
• Receiver_Status: a boolean indicating if this node is 
a multicast receiver or forwarder. 
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Figure 2: Partitioning of Network Datapath Table. 

 
Figure 2 shows the Network Datapath Table in the 

source node for the network shown in Figure 1, with  
receivers partitioned into neighborhoods as a result of 
this algorithm using[receivers per neighborhood] = 3. 
The algorithm works by taking the most remote node 
in the topmost block (the block with the longest 

datapath to the farthest receiver in the network) and 
stepping backward along the row, partitioning 
receivers into the first neighborhood.  Once a branch 
node is reached, the algorithm steps down into the 
proper branch row, moves to its end, then works back 
toward the source, again partitioning receivers into the 
first neighborhood. During this process the algorithm 
tracks neighborhood hopcount, while remaining within 
an individual block. Once enough receivers within the 
first block are partitioned into full neighborhoods, 
processing moves on to the next block. 

After receivers in each block  are partitioned into 
full neighborhoods there will be remainder nodes 
potentially from each block. Remainder nodes are then 
partitioned into neighborhoods. Given that remainder 
nodes will be those closest to the source, remainder 
node neighborhoods should also have a minimal 
hopcount between members.   

4.3 Source Neighborhood Algorithm

  After all receiver nodes are partitioned into 
neighborhoods, the neighborhoods are entered into a 
Storage Responsibility table, with  each row 
containing an individual neighborhood, and data 
packet sequence number storage implicitly assigned by 
column.  

           

Pkts 1-33 Pkts 34-66 Pkts 67-100 Nbrhd Hopct
R8 R7 R6 3
R4 R10 R11 2
R15 R16 R12 2
R13 R3 R2 4  
Figure 3: Storage Responsibilities 

 
Max hopcount per neighborhood is stored in this table 
at the end of each row; see Figure 3 for the 
neighborhood partitioning and storage assignments for 
the Network Datapath table partitioned in Figure 2. 
This Storage Responsibility Table is then added to the 
next outgoing Join Query packet and sent out to all 
receivers. Each receiver, upon obtaining this packet, 
parses out its neighborhood spanning hopcount and 
storage responsibilities, and begins storing packets. 

5 Protocol Performance Evaluation 
R-ODMRP was implemented within the ns-2 network 
simulator[3], developed by the University of 
California, Berkeley, and the VINT project, with 
Carnegie Mellon’s Monarch Project mobile and 
wireless  ns-2 extensions [10] incorporated.  The ns-2 
simulator is publicly available, and commonly used in 
networking research. [2] provides a  comprehensive 
description of the software layers and the IEEE 802.11 
MAC protocol used in these simulations.  One reason 
for ns-2’s popularity is the detailed manner in which 
the layers of the communication hierarchy are 
modeled, and the configurability at each layer. 



 

 
 

The ODMRP and R-ODMRP simulations all executed 
with identical randomly generated baselines of 
network traffic and node movement files to more 
accurately compare performance. This baseline 
consisted of five node movement scenarios and six 
traffic pattern scenarios. All scenarios established fifty 
mobile nodes with a single node as multicast source 
within a 1000m x 1000m area. The radio propagation 
range for each node was 250 meters, and the channel 
capacity was 2 Mb/sec. Each simulation executed for 
600 seconds of simulated time. Once all nodes joined 
the group the multicast source started sending  512 
byte packets with a constant bit rate of 3 packets per 
second. The traffic pattern scenarios had 25, 30, 35, 
40, 45 and 49 receiver nodes respectively. 

30 simulation runs each for ODMRP and R-
ODMRP. A total of 60 simulations were performed. 
This baseline was chosen for initial results because 
simulations [6] have shown that ODMRP performs 
best in conditions of relatively good network 
connectivity, low traffic load, and speed, and any 
protocol with the goal of increasing reliability would 
have to outperform it under these conditions.  R-
ODMRP would seem to have its greatest advantages in 
sparse networks with frequent partitions, however. For 
ODMRP and R-ODMRP, the ODMRP parameters 
were set to 3 seconds for the Join Query flood interval 
and 9 seconds for the forwarding state timeout, the 
values used by ODMRP’s creators in their simulation 
studies.  R-ODMRP set a flag in every fourth Join 
Query packet, turning it into a Reliable Join Query 
packet.  The node count per neighborhood for R-
ODMRP was 3, and nodes were set to store a 
maximum of 500 data packets,  in Round Robin mode.  

 
 

The performance of ODMRP and R-ODMRP were 
compared according to the following metrics. 
• Packet Delivery Ratio: the number of multicast data 
packets from a source correctly received over the 
number that should have been received.  
• Ratio of Data and Control Packets per Delivered 
Data Packet:  measures protocol routing efficiency. 
• Forwarding Efficiency: the average number of times 
each data packet was transmitted.  

 
 

Initial experiments lead to modifications of the basic 
mechanisms of R-ODMRP to produce better end 
results.  Originally,  the time-to-live hopcount for a 
resend request packet was set to the maximum distance 

between nodes within a given neighborhood. This 
produced average results. Some data packets that 
would have been correctly delivered under ODMRP 
were dropped due to channel contention with the 
Resend Requests, causing the R-ODMRP portion of 
the protocol to work harder to fill the gaps, leading to 
further network contention. In the end, a TTL of 1 
gave best results for Resend Request packets.   

5.1 Simulation Details 

  
 

 5.4 Simulation Results 
Figure 4 shows initial results for Packet Delivery 
Ratio. The ODMRP protocol alone produced a packet  
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Figure 4: Packet Delivery Ratio. 

 
delivery ratio of 93% to 94%. For the R-ODMRP 
protocol (the results of which were broken down into 
the ODMRP portion alone, and the R-ODMRP portion 
combined with ODMRP), the ODMRP portion 
operated between 1% and 1½ % worse than its 
standalone counterpart. This represents the decrease in 
normal packet delivery attributable to the overhead of 
the R-ODMRP portion. With the R-ODMRP portion 
combined however, the combination consistently 
performed about 4% better overall than ODMRP.  

5.2 Evaluation Metrics 

The other metrics show the tradeoffs for R-ODMRP.  
The Ratio of Data and Control Packets per Delivered 
Data Packet, shown in Figure 5,  shows an increase for 
R-ODMRP.  An increase must exist, since the basic 
premise is retransmission of previously sent data 
packets. The increase shown for R-ODMRP is 
manageable however, scaling similarly to ODMRP. 

Figure 6 shows  the Forwarding Efficiency of both 
protocols. Here, R-ODMRP shows worse performance 
than ODMRP. Again, this is expected given the basic 
premise. Data delivery latency of the two protocols  
shows the greatest differential, however. While the 
average latency of ODMRP, and the ODMRP portion 
of R-ODMRP averaged about 10 ms across all receiver  
counts,   the extra  packets  delivered  by  the Resend 

5.3 Initial Experiments 



 

Request/Reply mechanism tended to have a latency of 
seconds due to several factors. One is the fact that two 
seconds elapse after a gap is noticed before the Resend 
Reply packet is triggered, and a second is that a 
random delay is added to allow nodes to snoop other 
node’s Resend Replies. 

Packet Overhead - ODMRP + RODMRP Protocols, 
ODMRP Alone
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Figure 5: Ratio of Data+Control Pkts per Delivered 

Data Pkt.     
In dense networks future experiments will fine tune 

the tradeoff between latency and  increased channel 
contention from frequent Resend Requests, to bring 
this latency down.  In sparse networks this is less of an 
issue, since network partitions will put minimum 
possible boundaries on latency, making the time 
required for Resend Requests/Replies not an issue. 

Forwarding Efficiency - ODMRP + RODMRP 
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Figure 6: Forwarding Efficiency 

 
The competing metrics involved in enhancing 

reliability for ODMRP have been clarified as a result 
of this work. Four central factors balance against each 
other: Packet Delivery Ratio (“Reliability”), Ratio of 
Data and Control Packets per Delivered Data Packet 
(“Control Overhead”), Forwarding Efficiency 
(“Forwarding Overhead”) and Data Packet Latency to 
all Receivers (“Latency”). When the R-ODMRP 

portion is added to ODMRP, reliability increases, 
latency increases and network traffic overhead 
increases. A successful reliability component will   
increase reliability, increase overhead by an 
‘acceptable’ amount (i.e. low enough so that the 
resulting additional dropped packets can be 
overcome), and increase data packet latency as 
minimally as possible. Of the three factors, latency can 
be the least critical when increased reliability is 
desired, since the overhead metrics are more tightly 
linked to the reliability metric.In multicast ad hoc 
protocols, reliability falls off sharply as node density 
becomes sparser. It is expected that the sparser the 
network, the more successful a reliability component 
such as R-ODMRP will be in achieving its goals.  

6 Related Work 
Research has begun on reliability in multicast ad hoc 
networks in recent years. Mechanisms can be broken 
down into three categories; congestion control, data 
packet retransmission and forward error correction. 

RALM[9] is a reliable ad hoc multicast protocol that 
works by enforcing error and congestion control 
similar to TCP in wired networks.  Reliable data 
delivery is guaranteed to one group member at a time, 
round-robin, by requiring  the source to select a 
neighboring group member for data transmission. The 
neighboring member will reply with either an ACK or 
NACK. This feedback from the neighbor is used to 
initiate retransmission and adjust the source window 
size. Here, decreased throughput is the tradeoff for 
increased reliability.  Another downside is that even 
with congestion control, if packets are dropped,  they 
are resent from the source rather than locally, requiring 
more network overhead both for the receiver NACK 
and the source retransmit, and requiring the source to 
cache all data. 

Packet Erasure Recovery[8] uses error correction 
codes to provide reliability. Data packets are encoded 
and split into fragments with replication, and the 
fragments are then transmitted to receivers.  If a 
certain number of fragments arrive, the data packet is 
correctly reassembled.  The downside of this approach 
is that forward error correction work best when loss 
rates are predictable. In ad hoc networks, worst case 
behavior for a node to drop packets is unpredictable: a 
node may go out of range of the network and stay out 
of range. Also, more bandwidth and processing power 
is consumed with replicated data transmission. 

Hyper flooding [7] is an adaptive technique using 
flooding as a base, with modifications to prevent 
loops. Received data packets are stored internally by 
nodes that record neighbors by listening for and 



 

sending hello messages. Rebroadcasts of stored data 
packets occur when a packet is received from a node 
that is not on the neighbor list, or when receiving a 
new hello message. In these cases, all packets in the 
data packet cache are retransmitted.  The downside of 
this approach is that a greater amount of network 
overhead is used, which leads to more channel 
contention and data loss. Another disadvantage is the 
large amount of data caching at  each node. 

7 Future Work 
  Near term goals include examining the Resend 
Request/Reply mechanism to increase scalability for 
growing receiver counts in dense networks.  A closer 
look at packet ratios for each phase of R-ODMRP 
should provide information here. Also, examination of 
the transmission/reception details of the simulations 
will provide further data to close the gap to full packet 
delivery. It would be good to examine other network 
scenario baselines. For example, sparse networks 
would seem to be an area where R-ODMRP could 
operate to greatest advantage. A new mechanism for 
Resend Requests will be needed for this scenario.   

8 Conclusion 
  This paper described R-ODMRP, a reliability 
protocol overlaid on ODMRP.  R-ODMRP consists of 
operations to store and retransmit sequenced data 
packets between receiver nodes, with overall 
functionality coordinated by the source node.  
  R-ODMRP has been implemented in the ns-2 
simulator and run against a baseline scenario of a 
dense network with increasing receiver count, ideal 
conditions for the base ODMRP protocol.  Results 
show that R-ODMRP does outperform ODMRP under 
these conditions, but at a cost of an increase in routing 
efficiency, forwarding efficiency and data delivery 
latency. Future work will determine how the two 
protocols compare in less than ideal conditions.  
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