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ABSTRACT 
Digital forensic investigators are often faced with the task of manually examining a large number 
of (photographic) images in order to identify potential evidence. The task can be especially 
daunting and time-consuming if the target of the investigation is very broad, such as a web 
hosting service. Current forensic tools are woefully inadequate in facilitating this process and are 
largely confined to generating pages of thumbnail images and identifying known files through 
cryptographic hashes. 

We present a new approach that significantly automates the examination process by relying on 
image analysis techniques. The general approach is to use previously identified content (e.g., 
contraband images) and to perform feature extraction, which captures mathematically the 
essential properties of the images. Based on this analysis, we build a feature set database that 
allows us to automatically scan a target machine for images that are similar to the ones in the 
database.  

An important property of our approach is that it is not possible to recover the original image 
from the feature set. Therefore, it becomes possible to build a (potentially very large) database 
targeting known contraband images that investigators may be barred from collecting directly. 
The same approach can be used to automatically search for case-specific images, contraband or 
otherwise, or to provide online monitoring of shared storage for early detection of certain 
images.  

In this paper, we motivate our work through several real-world scenarios, outline the 
mathematical foundations of the image analysis tools that we used, and describe the results of a 
set of comprehensive tests through which we validated the use of these tools for forensics 
purposes. We also discuss architectural and performance issues related to the implementation 
and practical use of a working system based on our prototype. 
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1. Introduction 

Digital forensic investigations often require the examination of pictures found on the target 

media. Two typical tasks in that respect are the identification of contraband images and the 

identification of case-specific images, the presence of which can establish a fact or a logical link 

relevant to the investigation. The essential problem is that current forensic tools are ill-equipped 

to help the investigator given the scale of the task.  To illustrate, we recently recovered 

approximately 34,000 image files on a randomly selected machine in our general-purpose 

computing lab. Note that this was a relatively old system with a very modest 6GB hard drive and 

the images were mostly in the browser’s cache. Even if the investigator spends on average a 

fraction of a second on each image, it will still require several hours of routine, tedious work to 

browse through all of them. The dramatic drop in prices of storage devices, coupled with the leap 

in capacity (current street price for a 200GB hard drive is about $100), will make the examiner’s 

task even more difficult by removing any incentive for users to delete images. Thus, it is not 

unreasonable to expect that the hard drive of the average home user will contain hundreds of 

thousands of images. If we consider a target such as a web hosting service that can have tens of 

millions of images, the problem of examining all images becomes virtually intractable and 

investigators will need some means to narrow down the search space.  

The driving problem behind our work has been the identification of contraband images. This 

task consumes a significant fraction of the resources of our partners at the Gulf Coast Computer 

Forensics Lab (GCCFL). They have a clear and pressing need for a forensic tool that would 

allow automated examination of images on a massive scale. Similar problems in traditional 

forensics (e.g. fingerprint identification) have been tackled by building large reference databases 

that allow evidence from previous cases to be automatically searched. Clearly, a system capable 
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of automatically identifying contraband images found on target media by cross referencing a 

database of known images could be of significant help to investigators. The problem, however, is 

that unlike other forensic artifacts, contraband images typically cannot be stored, even by law 

enforcement agencies, for future reference. Aside from the legal barriers, building a sizeable 

reference database to be used on a routine basis by numerous agencies would be a challenging 

task. From a technical point of view, the storage and bandwidth requirements would be 

staggering. Scalability would be difficult to achieve as replication and distribution of such highly 

sensitive material would have to be limited. Finally, a potential security breach at such a storage 

facility or misuse by authorized personnel can only be compared to a nuclear accident as far as 

the public outcry is concerned.  

In summary, any realistic system design should not rely on having access to the original 

images during the lookup process. Rather, it would have a single opportunity to access the 

original when it can extract and store some identifying (“fingerprint”) information for later 

reference. Clearly, the fingerprint information should be sufficient to allow a high-probability 

match but it should also be impossible to reconstitute any recognizable version of the original 

image. In our search for a solution, we have come to the conclusion that analytical methods for 

content-based image retrieval can go a long way towards addressing image analysis needs in 

digital forensics. This paper is a first effort to evaluate the suitability of this approach as well as 

to present an architectural framework that would allow the deployment of a working system. 

The rest of the paper is organized as follows. First, we describe previous work in content-

based image retrieval, which forms the basis of our own work. Next, we present a set of 

experimental results that validate the use of content-based image retrieval for digital forensics 
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investigations.  Finally, we outline an architectural design (currently under implementation) that 

will allow the building of a scalable system that can be deployed and used in the real world. 

2. Content-Based Image Retrieval 

2.1. 2.1 Overview 

Depending on the query formats, image retrieval algorithms roughly belong to two 

categories: text-based approaches and content-based methods (see Figure 1). The text-based 

approaches associate keywords with each stored image.  These keywords are typically generated 

manually.  Image retrieval then becomes a standard database management problem. Some 

commercial image search engines, such as Google Image Search and Lycos Multimedia Search, 

are text-based image retrieval systems. However, manual annotation for a large collection of 

images is not always available. Further, it may be difficult to describe image content with a small 

set of keywords. This motivates research on content-based image retrieval (CBIR), where 

retrieval of images is guided by providing a query image or a sketch generated by a user (e.g., a 

sketch of a horse). 

 
 

Figure 1: Scheme diagrams of a text-based image retrieval system (left) and a content-based 
image retrieval system (right). 

 
In the past decade, many CBIR systems have been developed. Examples include the IBM 

QBIC System [FALO94], the MIT Photobook System [PENT96], the Berkeley Chabot 
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[OGLE95] and Blobworld Systems [CARS02], the Virage System [GUPT97], Columbia’s 

VisualSEEK and WebSEEK Systems [SMIT96], the PicHunter System [COX00], UCSB’s 

NeTra System [MA97], UIUC’s MARS System [MEHR97], the PicToSeek System [GEVE00], 

and Stanford’s WBIIS [WANG98] and SIMPLIcity Systems [WANG01], to name just a few. 

From a computational perspective, a typical CBIR system views the query image and the 

images in the database as a collection of features, and ranks the relevance between the query and 

any matching image in proportion to a similarity measure calculated from the features. These 

features are typically extracted from shape, texture, intensity, or color properties of the query 

image and the images in the database. These features are image signatures and characterize the 

content of images, with the similarity measure quantifying the resemblance in content features 

between a pair of images.  

Similarity comparison is an important issue in CBIR. In general, the comparison is 

performed either globally, using techniques such as histogram matching and color layout 

indexing, or locally, based on decomposed regions (objects). As a relatively mature method, 

histogram matching has been applied in many general-purpose image retrieval systems such as 

IBM QBIC, MIT Photobook, Virage System, and Columbia VisualSEEK and WebSEEK. A 

major drawback of the global histogram search lies in its sensitivity to intensity variations, color 

distortions, and cropping. 

In a human visual system, although color and texture are fundamental aspects of visual 

perceptions, human discernment of certain visual contents could potentially be associated with 

interesting classes of objects, or semantic meanings of objects in the image. A region-based 

retrieval system segments images into regions (objects), and retrieves images based on the 

similarity between regions. If image segmentation is ideal, it is relatively easy for the system to 
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identify objects in the image and to match similar objects from different images. Next, we will 

review a CBIR system, SIMPLIcity (Semantics-sensitive Integrated Matching for Picture 

LIbraries) [WANG01], which will be tested for forensics purposes. 

2.2. 2.2 SIMPLIcity System 

In the SIMPLIcity system, the query image and all images in the database are first segmented 

into regions. To segment an image, the system first partitions the image into non-overlapping  

blocks of size 4x4. A feature vector is then extracted for each block. The block size is chosen to 

compromise between texture effectiveness and computation time. Smaller block sizes may 

preserve more texture details but increase the computation time. Conversely, increasing the block 

size can reduce the computation time but lose texture information and increase the segmentation 

coarseness. 

Each feature vector consists of six features. Three of them are the average color components 

in a 4x4 block. The system uses the well-known LUV color space, where L encodes luminance, 

and U and V encode color information (chrominance). The other three represent energy in the 

high frequency bands of the wavelet transforms [DAUB92], that is, the square root of the second 

order moment of wavelet coefficients in high frequency bands. 

To obtain these moments, a Daubechies-4 wavelet transform is applied to the L component 

of the image. After a one-level wavelet transform, a 4x4 block is decomposed into four 

frequency bands: the LL (low low), LH (low high), HL, and HH bands. Each band contains 2x2 

coefficients. Without loss of generality, suppose the coefficients in the HL band are 
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from high frequency bands is that they reflect texture properties. Moments of wavelet 

coefficients in various frequency bands have been shown to be effective for representing texture. 

The intuition behind this is that coefficients in different frequency bands show variations in 

different directions. For example, the HL band shows activities in the horizontal direction. An 

image with vertical strips thus has high energy in the HL band and low energy in the LH band. 

The k-means algorithm is used to cluster the feature vectors into several classes with each 

class corresponding to one region in the segmented image. Because clustering is performed in 

the feature space, blocks in each cluster do not necessarily form a connected region in the 

images. This way, segmentation preserves the natural clustering of objects in textured images 

and allows classification of textured images. The k-means algorithm does not specify how many 

clusters to choose. The system adaptively select the number of clusters, C, by gradually 

increasing C until a stopping criterion is met. The average number of clusters for all images in 

the database changes in accordance with the adjustment of the stopping criteria. Each region is 

represented by a feature vector (of dimension 6) that corresponds to the centroid of the cluster. 

After segmentation, three extra features are calculated for each region to describe shape 

properties. They are normalized inertia [GERS00] of order 1 to 3. The normalized inertia is 

invariant to scaling and rotation. The minimum normalized inertia is achieved by spheres. If an 

image is segmented into C regions, the image is represented by C feature vectors each of 

dimension 9. Figure 2 illustrates the feature extraction process. Only two features for each image 

block are shown in the figure to make illustration easier. In the segmentation result, each region 

is represented by a distinct color. 
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Figure 2: Scheme diagram of  the feature extraction process. 

The similarity between two images is computed according to an integrated region matching 

(IRM) scheme [LI00]. In order to reduce the influence of inaccurate segmentation, the IRM 

measure allows for matching a region of one image to several regions of another image. That is, 

the region mapping between any two images is a many-to-many relationship. As a result, the 

similarity between two images is defined as the weighted sum of distances, in the feature space, 

between all regions from different images. Compared with retrieval systems based on individual 

regions, the IRM approach decreases the impact of inaccurate segmentation by smoothing over 

the imprecision in distances.  

3. Experimental Results 

To evaluate the suitability of CBIR methods for forensic purposes, we performed a number 

of experiments with the SIMPLIcity system. The experiments were designed to test its robustness 

against a number of typical transformed versions of the image that can be expected during an 

investigation. The first two were reductions in quality by varying the quality factor in JPEG 
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images to 30 and 10 percent, respectively. Such variations can be expected for two reasons—to 

reduce storage requirements without noticeably impairing the visual perception (at screen 

resolution) and to provide (visibly) lower quality samples. Depending on the initial quality of the 

source images, the suitable numbers will vary. In our case, the vast majority of the pictures were 

taken with a 5 megapixel digital camera and we judged qualitatively that a quality value of 30% 

approximates the first scenario, whereas 10% approximates the second one. Resizing is another 

common transformation applied for similar reasons, as well as to fit pictures into the design of 

web pages. We tested three different versions at 512, 256, and 96 pixels (for the longer 

dimension) with the last one designed to simulate the common ‘thumbnailing’ process. The last 

three transformations are 90º rotations and mirroring (vertical and horizontal) of images that can 

be expected during the processing of the raw images.   

The target database consists of 5,631 photo images in JPEG format. The goal is to 

demonstrate the ability of the system to recognize an image when its altered version is submitted 

as the query. We apply image alteration to an image (called target image i) in the database. The 

resulting image i’ is then used as the query image and the rank of the retrieved target image i is 

recorded. Here the rank of image i is defined as the position of image i in the first 100 retrieved 

images. Clearly, a “good” system should return the original image at the top of the list, i.e., a 

lower value in rank. The lowest (or best) rank is 1. If image i does not show up in the top 100 

retrieved images, it is considered a missed image. 

We tested the system against the image alterations shown in Table 1. For each alteration, the 

average rank for all target images (excluding the missed images) is computed and these results 

are given in Table 2. 
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Table 1. Alterations applied to query images. 
ID Alteration 
JPEG30 Reducing JPEG quality to 10% 
JPEG10 Reducing JPEG quality to 30% 
Resize1 Resizing the image such that the largest of the width and height is 512 pixels 
Resize2 Resizing the image such that the largest of the width and height is 256 pixels 
Resize3 Resizing the image such that the largest of the width and height is 96 pixels. 
Rotation Rotating the image by 90º. 
Flip Creating a mirror image. 
Flop Creating a mirror image. 

 

Table 2.  Experimental results for queries based on altered images. The rank is the position of 
the target image in the first 100 retrieved images. 

Alteration 
ID 

The Number of Missed Images 
(Miss Rate) 

Average Rank 

JPEG30 43 (0.76%) 1.16 
JPEG10 43 (0.76%) 1.16 
Resize1 43 (0.76%) 1.16 
Resize2 43 (0.76%) 1.16 
Resize3 43 (0.76%) 1.16 
Rotation 27 (0.48%) 1.08 
Flip 43 (0.76%) 1.16 
Flop 43 (0.76%) 1.16 

 

The experimental results clearly indicate that the image analysis techniques employed in our 

pilot study are an excellent match for the problems faced in digital forensic investigations and 

warrant further development. One of problems we face is that the original research upon which 

our work is based is directed at a slightly different problem and the research system we used is 

far from being directly applicable to forensic investigations. Specifically, system-level issues 

such as performance, scalability, and security need to be addressed before a working prototype 

can be tested in a forensics lab. In the following sections, we discuss our system design and 

ongoing implementation effort. 

 10



4. Design Overview  

4.1. Goals 

Our design rationale is based on the following goals: 

• Service-oriented architecture. Despite the fact that the stored image feature sets are not 

contraband, even if they do correspond to contraband images, we anticipate that the database 

will be administered by law enforcement agencies. Therefore, most software products will 

not be able to bundle such database.  Furthermore, the database will be a highly dynamic 

entity once a large number of federal, state, and local agencies become contributors. 

• Performance. The system should be able to handle individual requests at rates that will allow 

investigations to proceed interactively. For reference, current open source imaging software 

can generate thumbnail images at approximately 1000 images per minute—a working system 

should be able to perform at a similar rate or better (while providing a much higher value 

service).  

• Scalability. The system should eventually be able to handle millions of images without a 

serious degradation in performance. This clearly implies that the system will have to 

incorporate replication and distributed processing as part of its original design. 

• Security. The standard requirements for privacy, authentication, and secure system 

administration apply here. Recall that we do not store copies of the actual images, which not 

only makes the system legal but it greatly mitigates the consequences of any security breach. 

• Flexible deployment. It should be possible to use the same basic architecture for both 

forensics investigations and for preventive monitoring.  
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Figure 3: Architecture for a client/server image matching service.  A client computes the feature 
set for one or more target images and issues queries against a server, which maintains a reference 

database of features for images of interest.  The server indicates which images match the 
reference database and can also alert external systems when matches occur. 

4.2.  Architecture 

Architecturally, our design is based on a classical client/server approach, as shown in Figure 

3. The function of the client is to take one or more target images, compute the feature sets, and 

submit them to the server.  The server then compares the submitted feature sets with those in a 

reference database. The client must keep track of outstanding queries so that it can alert a user 

when image matches occur. Note that a match here means that the feature set of the target image 

is close enough to a feature set in the reference database. Thus, false positives are a possibility, 

and these will need to be dealt with by the investigator. 

The server has two basic functions: 

• Maintain the reference database of known feature sets. This includes adding and removing 

feature sets of images, as well as maintaining the integrity of the data and coordinating access 

to it. The latter two become non-trivial issues if the data and/or the processing are distributed 

for performance reasons. 
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• Accept queries from clients and react accordingly. The server must first determine if the 

received feature set is a match, and then must either reply to the client, or take some other 

action, such as raising an alarm if the system is used for on-line monitoring.    

The server is presented as a web service and uses a SOAP-based protocol to communicate 

with the client. The rationale here is that the reference database is likely to be managed by a few 

law enforcement agencies and will have to be available over the Internet. The use of the public 

Internet does not raise any new security concerns because a feature set is merely an array of 

numbers to be interpreted by the server.  Standard mechanisms for authentication should still be 

in place to protect the database from attacks, e.g., denial of service attacks.  However, no unique 

security issues are raised by our design and, due to the nature of the database content, even a full-

scale security breach will not yield any information that is usable outside the system. 

Some initial performance measures during our experiments confirmed our hypothesis that the 

processing of a forensic target will have to be distributed in order to be completed in a timely 

(ideally, interactive) fashion.  The dominant factor is computation of the feature set for an image. 

Depending on the size of the source image, this computation can take anywhere from a fraction 

of a second to a couple of minutes. In our work, we scaled all images so that they did not exceed 

384x384 pixels. Thus, the processing time was about 0.5 seconds per image. Assuming a target 

of 100,000 images, it would take about 14 hours to complete the feature extraction sequentially. 

Therefore, we are working on an implementation that integrates the feature extraction function 

into our distributed digital forensics infrastructure [ROU04].  This infrastructure supports digital 

forensics investigations on a cluster, providing vast improvements in performance over 

traditional “single investigator machine” approaches.  These performance improvements are 
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based on using multiple CPUs to tackle CPU-intensive operations and extensive use of caching 

to reduce disk I/O.  

Another benefit in using our distributed forensics infrastructure is to support case-specific 

searches on a target. In this case, the system would build a reference database of all the images 

on the target and allows searches for images similar to ones submitted interactively by an 

investigator, e.g., images containing somebody’s face or a particular building. 

5. Conclusions 

In this paper, we introduce a new approach to the forensic investigation of visual images 

through content-based image retrieval (CBIR). We use established CBIR techniques originally 

developed for other application domains and apply them for digital forensic purposes. Our 

approach is to extract an image ‘fingerprint’ (feature set) and use it to perform subsequent 

comparisons to find the best match among a set of images. A notable characteristic of this 

method is that it does not need to store the original image (only the fingerprint) in order to 

perform subsequent comparisons. The main advantage is that this allows the building of a 

reference database of fingerprints of contraband images. A secondary benefit is that it 

dramatically reduces the storage requirements for the reference database making it a lot easier to 

achieve good performance at a reasonable cost. 

We performed a set of experiments to evaluate the suitability of the CBIR techniques used 

for forensic purposes. In particular, we tested the robustness of the query results by searching the 

reference database for versions of the original images obtained through common transformations, 

such as resizing. Our results, based on a sample of 5,631 images, strongly support the suitability 

of the chosen techniques for forensic purposes. Specifically, we propose two main applications: a 
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reference database for contraband images and case-specific image search tools. In the first case, 

law enforcement agencies will be able to collectively build and access the database to 

automatically search targets for known contraband. In the second case, a database of all images 

found on a target is built and the investigator can submit queries for images similar to some 

specific images they are interested in.  To accommodate the two scenarios, we presented a design 

based on a service-oriented architecture (currently under implementation) and a distributed 

forensic tool based on our existing work. 

Overall, the main contribution of this work is that it presents a sound and practical approach 

to the problem of automating the forensic examination of images. Unlike other approaches, such 

as hashing, our approach is based on image analysis and is very stable in that it can locate not 

only the original image but also many common variations of it.  
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