
lable at ScienceDirect

Digital Investigation xxx (2016) 1e11
Contents lists avai
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
Research Summary
Memory forensics: The path forward

Andrew Case a, Golden G. Richard III b, *

a New Orleans, LA, United States
b Center for Computation and Technology and Division of Computer Science and Engineering, Louisiana State University, Baton Rouge, LA, United States
a r t i c l e i n f o

Article history:
Available online xxx

Keywords:
Memory forensics
Computer forensics
Memory analysis
Incident response
Malware
* Corresponding author.
E-mail addresses: andrew@dfir.org (A. Case), golde

http://dx.doi.org/10.1016/j.diin.2016.12.004
1742-2876/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Case, A., Ri
10.1016/j.diin.2016.12.004
a b s t r a c t

Traditionally, digital forensics focused on artifacts located on the storage devices of computer systems,
mobile phones, digital cameras, and other electronic devices. In the past decade, however, researchers
have created a number of powerful memory forensics tools that expand the scope of digital forensics to
include the examination of volatile memory as well. While memory forensic techniques have evolved
from simple string searches to deep, structured analysis of application and kernel data structures for a
number of platforms and operating systems, much research remains to be done. This paper surveys the
state-of-the-art in memory forensics, provide critical analysis of current-generation techniques, describe
important changes in operating systems design that impact memory forensics, and sketches important
areas for further research.

© 2017 Elsevier Ltd. All rights reserved.
Introduction

Traditional storage forensics comprises a set of techniques to
recover, preserve, and examines digital evidence and has applica-
tions in a number of important areas, including investigation of
child exploitation, identity theft, counter-terrorism, intellectual
property disputes, and more. Storage forensics tools are focused
primarily on “dead” analysis, typically using bit-perfect copies of
storage media. From these copies, deleted files or file fragments are
recovered, patterns of file access are determined, past web
browsing activity is observed, etc. Over the past decade, a number
of factors have contributed to an increasing interest in memory
forensics techniques, which allow analysis of a system's volatile
memory for forensic artifacts. These factors include a huge increase
in the size of forensic targets, larger case back-logs as more criminal
activity involves the use of computer systems, the use of forensics
techniques in incident response to combat malware, and trends in
malware development, where malware now routinely leaves no
traces on non-volatile storage devices. Importantly, memory
forensics techniques can reveal a substantial amount of volatile
evidence that would be completely lost if traditional “pull the plug”
forensic procedures were followed. This evidence includes lists of
running processes, network connections, fragments of volatile data
such as chat messages, and keying material for drive encryption.
n@cct.lsu.edu (G.G. Richard).

chard, III, G.G., Memory foren
While there has been tremendous progress in building
advanced memory forensics tools since the first rudimentary
techniques were developed around 2004, muchwork remains to be
done in this exciting research area. This paper surveys the state-of-
the-art in a number of areas in memory forensics, including
acquisition and analysis, and attempts to clearly lay out the
research challenges that lie ahead. These challenges include not
only work that remains to be done, such as better analysis tech-
niques for user-level malware, but also fundamental shifts in how
memory forensics tools are designed and how they operate, to
accommodate significant changes in operating systems design.

Area of focus e memory acquisition

Historical approaches to memory acquisition

The ability to acquire volatile memory in a stable manner is the
first prerequisite of memory analysis. Traditionally, memory
acquisition was a straightforward process as operating systems
provided built-in facilities for this purpose. These facilities, such as
/dev/mem on Linux andMac OS X and \\.\Device\\PhysicalMemory on
Windows, provided administrator-level users direct access to
physical memory.

On modern systems, such facilities are generally not available,
however, due to security concerns. In particular, both /dev/mem and
PhysicalMemory allowed for read and write access to physical
memory (CrazyLord, 2002). This allowed malware not only to steal
the contents of kernel memory, but also to modify it. The notorious
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/

mailto:andrew@dfir.org
mailto:golden@cct.lsu.edu
www.sciencedirect.com/science/journal/17422876
www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.12.004
http://dx.doi.org/10.1016/j.diin.2016.12.004
http://dx.doi.org/10.1016/j.diin.2016.12.004


A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e112
Phalanx2 rootkit (Case, 2012) leveraged /dev/mem in this manner as
do many other malware variants across operating system versions.

Beyond the security issues, these built-in facilities were
becoming of limited use to investigators as systems under in-
vestigations were rapidly moving towards:

� Having multiple CPU cores and/or physical processors installed
� Increasing amounts of RAM
� Operating system adoption to the demands of scale

Even if the kernel devices such as /dev/mem were available, the
implementations are not safe for memory acquisition onmulticore/
multi-CPU systems, as races to map, remap, and unmap pages can
result in kernel instability. Furthermore, since the acquisition tools
reading from these interfaces are executing in userland, in-kernel
synchronization primitives can't be used to solve the problem.
Thus kernel modules must typically be loaded to allow memory to
be acquired and on multicore/multi-CPU systems, the kernel
modules must be carefully designed to pay special attention to the
operating system-specific rules governing how and when kernel
mode code can be interrupted (generally known as kernel pre-
emption) (Stüttgen and Cohen, 2014).

The continuously increasing amount of RAM installed in sys-
tems leads to page smearing (Carvey, 2005), which is an inconsis-
tency between what the state of memory as described by the page
tables is versus what is actually in those pages of memory. This
issue occurs due to the time lapse between when the page tables
are acquired versus when data is acquired in other portions of RAM.
Smearing will be discussed in full detail in the following sections.

Current issues e page smearing

The following sections describe current approaches to acquisi-
tion across all major operating systems, along with the limitations
of these approaches. Each section is structured to describe the state
of the art, its limitations, and future directions to improve acqui-
sition techniques and procedures. We start with page smearing as it
is one of the most pressing issues.

Current state
As mentioned above, page smearing is an inconsistency that

occurs in memory captures when the acquired page tables refer-
ence physical pages whose contents changed during the acquisition
process. In our experience, this problem is commonly encountered
on systems that have 8 gigabytes or more of RAM installed as well
as systems that are under heavy load. Unfortunately, systems with
less than 8 gigabytes of RAM are increasingly uncommon and
servers frequently have from 16 gigabytes of RAM to hundreds of
gigabytes. The increasing amount of RAM installed in computer
systems means that nearly all captures will contain at least some
amount of smear. Depending on where the smear occurs, this can
result in undesirable results of varying degrees of severity, from
memory pages belonging to one process being assigned to another
in the view of the memory analysis tool, to corrupted kernel data
structures. Unfortunately, memory analysis tools and frameworks
have no method to automatically detect smearing as there is only
one source of data for address translation - the smeared page tables
themselves.

The move to the cloud and the adoption of local cloud
computing models has led to an increase in system utilization
across servers. As recommended by both the Amazon AWS
(Amazon ec2 container serv, 2016) and Google Cloud (Scaling based
on cpu or l, 2016) documentation, running systems at 75% load
achieves the greatest balance of CPU utilization without over-
utilization as well as cost savings. An industry-wide shift to every
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
server acquired running at 75% capacity with 16GBþ of RAM is a
very different model than the one used to conceive current gen-
eration memory acquisition algorithms.

Issues and limitations
With the exception of attempting to acquire memory as quickly

as possible, acquisition tools currently do not make any effort to
detect or work around smearing. Analysts routinely try to work
around smearing by leveraging hypervisor capabilities when access
to the hypervisor host is possible. As discussed in Ligh et al. (2014),
virtualization technologies such as VMware, HyperV, and Virtual-
Box provide the ability to acquire guest memory VM from the host.
This acquisition can be performed “instantly” by leveraging
hypervisor-specific features, such as snapshots and suspended
states, to freeze the guest in-place. This prevents smearing from
occurring as the guest can no longer make modifications to mem-
ory, and the analyst can simply copy the saved memory state from
the hypervisor's file system. This approach is not universally usable,
however, as obviously not all systems are virtualized. Furthermore,
even in virtualized environments the analyst does not always have
access to the physical host, such as in Amazon's AWS or Microsoft's
Azure. There may also be issues with temporality suspending a
running virtual machine as it may affect production performance
and stability.

Future directions
The issues created by page smearing necessitate that memory

acquisition tools take smearing into account during the acquisition
phase. To this end, we propose several methods that may meet this
need.

Leveraging virtual machine hardware extensions. Our first proposed
method is a modern implementation of the BodySnatcher tool
(Schatz, 2007). BodySnatcher attempted to ‘freeze’ the running
operating system and load a small, second operating system at
runtime. This was performed without the support of hardware-
based virtual machine support as that technology was not yet in
use.

We envision that a modern approach to BodySnatcher could
instead leverage hardware based virtualization to cleanly:

� Insert a new operating system “under” the existing one
� Freeze the existing operating system
� Write memory of the frozen operating system to removable
media or the network

Blue Pill (Rutkowska and Tereshkin, 2008) is a famous example
of leveraging this technology to implement rootkit functionality,
and the same approach could be taken for defensive acquisition
purposes. Besides acquisition from native hardware, this approach
would also work for virtual machine guests where the analyst did
not have host access, as hardware virtualization extensions allow
for nesting of virtual machines. The downside is similar to those of
leveraging traditional hypervisors in that network connections and
other activity would be frozen for the duration of the acquisition.
This is usually not an issue for end-user systems, but is often un-
acceptable for production servers.

Smear-aware acquisition tools. Our second proposed method is for
acquisition tools to become aware of changes to the page tables as
acquisition is performed. Unfortunately, there is no single place in
the kernel that could be monitored for such changes, as applica-
tions and kernel drivers continuously allocate and deallocate
memory as well as making changes to memory as the acquisition
tool runs.
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e11 3
To work around this issue, acquisition tools could start analysis
by parsing the page table entries of every context, which includes
the kernel's context as well as the context of every process. This
gathered data would then be saved to the same medium as where
the memory capture will be written. Next, memory would be ac-
quired as it currently is. Upon completion, the page tables would
then be enumerated and written out to a separate file on the
storage medium.

Having the state of the page tables both before, during, and after
acquisition would allow analysis frameworks to decide what to do
with pages that have changed. For example, the framework could
simply choose to discard all pages that were modified when per-
forming analysis of active data (e.g., running Yara rules across
process memory). The framework could also decide to incorporate
the changed page, but print debug messages to users that data has
changed at particular addresses. Advanced approaches could
include incorporating historical copies of data from places in
memory that used to hold the data a process referenced.We believe
there are many avenues of research in this area that could be
beneficial to sound memory acquisition.

Current issue e incorporation of non-resident pages

Current state
Besides page smearing, page swapping and demand paging are

currently the biggest obstacles to complete acquisition of memory.
Page swapping is mechanism that allows for an operating system to
use more memory than is actually available in RAM. To achieve this,
the operating system stores excess pages in a secondary source,
normally in a local file system, until those pages are needed again.
Demand paging is a mechanism whereby the operating system
does not bring information from files on disk into memory until
they are absolutely needed, usually as a result of a read or a write
operation to a portion of a file.

Combined, these issues prevent analysts from gaining a com-
plete picture of what was happening on the system at the time of
acquisition. As discussed in Ligh et al. (2014), the pages that are
commonly swapped to disk are those that are associated with
userland processes and not the kernel. Such pages will have
revealing details of user activity, such as web browsing, command
line activity, DNS requests and responses, and email activity that is
often crucial to investigations. Demand paging causes its own is-
sues as many pages of the running executable and its shared li-
braries (DLLs) will be on disk and not in memory. This can prevent
complete binary analysis of components that may have malicious
functionality or that have been a victim of code injection.

Issues and limitations
The seemingly obvious solution to the issues of page swapping

and demand paging is for the memory acquisition tool to first ac-
quire memory and then acquire the page file(s) along with any
actively referenced files in the file system. Unfortunately, applying
this approach to real world investigations is not as easy as it seems.

To begin with, as mentioned previously, acquisition tools do not
currently handle page smearing in main memory. This problem is
only multiplied then when applied to acquisition of the page file.
Just as page table entries and contents in main memory can be
smeared, so can entries in the paging file. In fact, the entries are
usually further smeared as the page file is acquired after memory
acquisition is finished in order to follow the Order of Volatility
(Farmer and Venema, 2005). This acquisition flow nearly guaran-
tees that pages in the swap file will have changed from when the
page tables that describe the swap file contents were acquired. The
increase in RAM of common systems exacerbates this problem as
Windows creates paging files whose size is related to the size of
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
RAM. This can make acquisition of the page file take a substantial
amount of time, especially when acquisition is performed over the
network.

Accounting for demand paging also presents several problems.
First, in order to determine which files are being accessed by
running code requires the acquisition tool to essentially perform
memory forensics. In particular, it would need to parse the handle
(file descriptor) tables as well as file-backed memory mappings of
each process in order to gather a list of files to acquire. This is a
substantial amount of logic to add to the acquisition tool, especially
if support for a wide variety of operating systems and operating
systems versions is important.

Second, in order to maintain the Order of Volatility, all memory
should be acquired first, and then the handle tables and memory
mappings parsed second. This will necessarily lead to incomplete
and inconsistent data as processes will have opened and closed
handles during this time as well as mapped and unmapped files.
There is also the chance of processes terminating or being created
during acquisition. All of these cases would lead to missing files.

The last issue is that even if the acquisition tool could gather a
complete list of files needed, a blacklist of files not to acquire would
be needed. As an example on Windows, the kernel thread process
(System) can have handles open to registry hives, the hibernation
file, swap files, and others. These files can be quite large and are
often not the targets of demand paging. Furthermore, processes
such as database servers will have handles opened to huge files that
are often not relevant and whose collection would substantially
slow down acquisition speed. Fine-tuning of which files to collect
and which not to collect would require intensive research and any
missing entries from the blacklist could jeopardize acquisitions.

Future directions
Due to the importance of data in the swap file, we feel that it is

crucial for the acquisition process to correctly acquire the swap file
as well as for acquisition to then incorporate analysis of it. In this
subsection we describe our proposed methods for acquisition tools
to acquire the swap file with limited (or no) smear, and in Section
“Area of focus e memory analysis” we describe how analysis
frameworks can seamlessly integrate swap.

Unlike page smearing directly in RAM, smear related to page file
acquisition occurs only through the operation handlers for reading
and writing to the swap file. If an acquisition tool were to monitor
these operations, it could then decide to passively or actively ac-
count for pages coming in and out of the swap file as acquisition
occurs.

In passive mode, the acquisition driver could monitor reads and
writes to the page file and record the physical offsets onwhich they
occurred. This monitoring would start from when the driver is
loaded until both volatile memory and the page file(s) from disk
were acquired. The set of pages affected by swapping could then be
stored in metadata associated with the capture. Memory analysis
tools that integrated swap file analysis could then leverage this
metadata to ignore regions that changed. This would effectively
stop smeared pages from being incorporated into analysis results.

In activemode, the acquisition driver could go a step further and
instead of simply recordingwhich pages are being smeared, it could
also read the data currently in the swapped position before
allowing it to be overwritten. The memory acquisition tool could
then write the recovered data into a separate store along with
metadata describing its physical offset. Memory analysis tools
would then read the list of pages that were affected by smear and
substitute in the recovered data on reads to the affected offsets.
With flexible memory analysis frameworks, such as Volatility, this
would be aminor update to howaddress translation already occurs.
This process of saving pages before they are overwritten and
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e114
incorporating them into analysis would remove the effects of
pagefile-based smearing.

Current issue e changes to Windows hibernation file analysis

Current state
System hibernation is the process of a computer suspending it-

self in amanner that allows the user's session to be resumed quickly
but without requiring power between uses. During the hibernation
process, the operating system writes a complete capture of RAM to
the local file system in order to allow for a full power down. This is
contrast to system ‘sleep’ modes, which put the system into a low
power mode that maintains the state of system RAM.

Since Windows XP, memory forensic analysts have leveraged
the contents of RAM written during to disk during hibernation,
referred to as ‘hibernation files’, in order to acquire a historical
capture of memory. Analysis of these files was initially made
possible due to research performed by Matthe Suiche and pre-
sented at Black Hat 2008 (Suiche, 2008).

Issues and limitations
Beginning with Windows 8, Microsoft substantially changed

both the on-disk format of hibernation files as well as the opera-
tions performed upon it during system resume. Before Windows 8,
after the system resumed, the only datamodified in the hibernation
file was the header. This allowed memory analysis tools to fully
analyze the RAM contents contained within the file. Starting with
Windows 8, however, this procedure is modified and the header is
left in-tact, but the rest of file's contents is overwritten with zeros
(Sylve et al., 2016). This makes analysis of hibernation files from
running systems impossible on modern Windows versions.

Future directions
Because the hibernation file is zeroed when the system boots,

there is little that can be done during acquisition or analysis to
recover memory artifacts from hibernation files acquired from live
Windows systems runningWindows 8 or later. Instead, we propose
that live acquisition scripts and procedures be altered to exclude
acquisition of these files. This will substantially speed up the
acquisition process as Windows hibernation files are of roughly the
same size as the amount of RAM installed. Avoiding analysis of
these files will also prevent wasted analyst time and effort.
Furthermore, we suggest that developers of memory analysis tools
and frameworks provide end-users with explicit warning messages
when users try to analyze hibernation files from such systems. This
will again prevent analysts wasting time trying to troubleshoot
their tools and contacting support for clarification.

Current issue e Windows 10

Current state
In addition to the changes in hibernation analysis, Windows 10

also introduced several other features that affect memory forensics.
This section focuses on issues that currently are under-researched
or for which no public research exists. Due to the rapid adoption
of Windows 10 throughout corporate enterprises, it is vital that the
digital forensics community better understand this new operating
system and proper memory forensic approaches applicable to it.

Issues and limitations
There are currently at least two areas where further research for

Windows 10 acquisition is needed.

Device Guard. The first, Device Guard (Device guard deployment
guide, 2016), is a major architectural change to Windows whose
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
purpose is to protect critical components of the operating system
from tampering by malware. It accomplishes this protection by
transparently running the user-facing operating system inside of a
virtual machine guest. The hypervisor host, which the user has no
access to, then protects memory of critical processes, such as LSASS,
as well as monitors for malicious changes to the system, such as
malware overwriting core kernel components. Even kernel-level
malware will be defenseless against these protections as the se-
curity code is running in an isolated environment with higher
privileges. This is in sharp contrast to the traditional arms race
between kernel-level malware and kernel-level security agents
that both ran within the same security boundary. The implications
for memory acquisition are that without a break out of virtualiza-
tion exploit, only the memory of the guest VM can be acquired and
significant portions of the operating system's state are inaccessible
to acquisition tools.

Swapfile.sys. The next major change involves the addition of a new
virtual memory file, swapfile.sys (Geek, 2015). This file was created
to handle swapping of Microsoft's new style of applications, now
referred to as “Universal Windows Platform Apps”, but also as
“Windows Store Apps”, “Metro Apps”, and “Windows Modern
Apps”. With this new swapping strategy, instead of individual
pages from a Metro App being swapped out into pagefile.sys, the
entire working set of the application is written into a new file,
swapfile.sys. In Windows terminology, an application's working set
is all of the addressable pages that a process currently has assigned
to its address space.

Universal and Metro Apps. New Metro Apps not only introduced
changes related to swapping of virtual memory, but they also
introduce a rich set of new APIs that allow for interacting with
touch screens and other peripherals that are not present on tradi-
tional devices (MSDN, 2016a). These new APIs allow for legitimate
applications to monitor a wide range of user behavior and hard-
ware interactions in order to respond to such events.

Future directions
All of the discussedWindows 10 changes necessitate research in

order for memory forensic analysts to have a full understanding of
an investigated system's state as well as to understand how mal-
ware may abuse these new features.

Device Guard. While Device Guard's security enhancements will
prevent traditional malware from accomplishing its goals, it also
presents a major stumbling block for analysts. Since memory
acquisition tools run inside the protected guest, analysts have no
insight into what occurs at the hypervisor level or inside the
guest(s) that the hypervisor creates in order to run the security
monitors. It seems inevitable that sophisticated attackers will
escape this guest virtual machine into the hypervisor, and at the
current time, forensic investigators will have no means to track this
activity.

Swapfile.sys. The addition of a new file that contains swapped
virtual memory compounds the issues described previously in
regards to smear and file acquisition. Furthermore, this new file
will necessitate changes to how analysts approach analysis of
swapped data. Currently, many analysts are trained to analyze
pagefile.sys in order to find records of user and other system ac-
tivity. With the addition of swapfile.sys, it appears as if all of the
pages belonging to processes will instead be stored in a separate
source. Considering that common applications, such as browsers,
document viewers and editors, and chat applications are all being
moved to the universal platform, it is reasonable to assume that
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e11 5
substantial amounts of valuable data will no longer be in
pagefile.sys.

Universal and Metro Apps. While the introduction of the newMetro
APIs and interfaces are meant for legitimate purposes, malware has
historically abused such APIs for keylogging, monitoring web
cameras and microphones, and a wide range of other nefarious
purposes (Ligh, 2012). We expect that malware authors will begin
to adopt their toolkits to these new APIs as they are not currently
monitored by endpoint agents and memory forensics toolkits.
Monitoring of these interfaces will require research and develop-
ment time by forensics tool developers, which gives attackers a gap
in time in which to operate undetected.

Linux and Android acquisition

Current state
Linux and Android systems present unique memory forensic

challenges. Unlike Windows and Mac OS X, where a memory
acquisition kernel driver can be compiled for a broad range of
kernel versions, Linux kernel modules need to be compiled for
every version and subversion of the kernel. This close dependency
on specific kernel versions combined with the speed of kernel
development and the number of distributions, such as Ubuntu,
Debian, RedHat, CentOS, and OpenSuSe, leads to a situation where
complete Linux version support would encompass thousands of
kernel modules. Creating and maintaining such a database requires
dedicated support by a team of engineers as well as automation of
checking for new updates and building of new operating system
version kernel modules. There is also a considerable amount of
monetary and infrastructure needs to host the database of profiles
online in a world wide accessible manner.

There are currently no open source projects that dedicate this
amount of effort to a database of Linux profiles. On the commercial
side, Threat Protection for Linux (Garner, 2016), formerly known as
Second Look, maintains a database of thousands of kernel modules
and profiles. This database is only made available to customers and
requires a mix of engineers and automated processing to keep up-
to-date.

Issues and limitations
Leveraging a kernel module database. While useful in many in-
stances, the dependency of a memory analysis tool or framework
on a database of all existing kernel modules has several short-
comings. The first is that this database must be constantly updated.
While it may be possible for a vendor to keep such a database up-
to-date, it is often difficult for users of the associated tool to stay in
sync with the updates. The most common issue is that many
forensic systems are permanently disconnected from the Internet
to avoid leakage of evidence. This makes updating systems a
manual process, which usually involves burning CDs/DVDs and
then transferring them, and few investigators will want to perform
this process on a daily or weekly basis.

The second issue with this approach is that there is no fallback
for systems running custom compiled kernels. While generally
thought of as something only done by enthusiasts, these custom
kernels are increasingly found in the field as vendors create kernels
for highly specific use cases such as single purpose hardware de-
vices as well as high performance systems.

The last issue is that it is not usable in incident response sce-
narios where the kernel versions of the systems to be acquired
unknown. To leverage the database during these scenarios, a few
steps must occur before acquisition can actually begin. First, the
correct kernel module must be identified. This would ideally be
done via an invocation of uname -a by the investigator, but might
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
also require loading a separate tool to uniquely identify the version.
Second, the identified kernel module must be obtained. In a situ-
ation where the entire database isn't mirrored to the investigator,
such as in the Second Look approach, the individual module must
then be downloaded. This shouldn't be done on the system under
investigation, however, as it would be noisy and pollute data.
Instead, a second system must be used to download the module
and then it could be transferred to the system in question. Only
after these steps could acquisition begin. This process has several
significant disadvantages, including 1) it assumes the investigators
are in an environment where Internet connectivity is allowed 2)
this process does not scale, as it requires manual intervention and
3) the time between system version identification and acquisition
starting leaves a time gap for attackers to take notice and act.

Leveraging existing kernel modules. A unique approach to avoiding
the need for a new kernel acquisition model for every kernel
version was presented in Stüttgen and Cohen (2014). In this paper,
the issues with building a kernel module for every kernel were
discussed, along with how the kernel verifies that a module to be
loaded matches the running the kernel. The paper then discusses
how, in order to bypass this check and still keep the system stable, a
copy of an existing kernel module is infected with the acquisition
algorithm. This allows memory acquisition code to be loaded into
the kernel, since the existingmodulewill have the correct metadata
to pass the version check and also for acquisition to be in a kernel
version independent manner.

This approach has disadvantages as well, however. As described
in detail in the paper, in order for the acquisition process to remain
stable, the injected acquisition algorithm is extremely simple.
Simplicity is necessary to avoid leveraging APIs or using data
structures whose implementation or layout changes between ver-
sions. The algorithm works by creating a character device, which
makes the driver's functionality available to userland, implement-
ing the read handler of the device driver so that the userland
component can read from it, and implementing a page remapping
algorithm in order to allow physical memory to be read by
userland.

In contrast to this approach is the one used by LiME (Sylve et al.,
2012), the most widely used acquisition tool for Linux. LiME pro-
vides a rich set of capabilities, such as the ability to write to local
disk or over the network. LiME is also unique in that it performs
acquisition directly from the kernel. As shown in Sylve et al. (2012),
acquiring memory directly from the kernel, and as a result
bypassing the need for thousands of context switches, leads to
memory captures with a substantially larger percentage of the
original data versus approaches that acquire through kernel-to-
userland facilities.

LiME is not a perfect solution, however, as it requires its kernel
module to be built for every version of the Linux kernel. Also, there
are features missing that mature memory acquisition tools provide,
such as file compression and over-the-network encryption, which
would be difficult and error prone to implement in the kernel. This
means that LiME would likely have to be redesigned to support
userland facilities where such operations are straightforward. This
would negatively affect its ability to acquire nearly pristine copies
of memory.

Leveraging /proc/kcore. The loss of /dev/mem led many in the digital
forensics community to assume that all future acquisitions of Linux
memory would require kernel drivers. This led to the development
of tools based on kernel modules, such as fmem (niekt0 and fmem,
2011) and LiME. This assumption is not entirely valid, as /proc/kcore
still exposes the kernel's virtual memory space. First discussed in a
digital forensics context by Burdach (2006) in 2006, on 64-bit
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e116
systems /proc/kcore allows full memory acquisition as the entire
physical address space of the system is mapped into virtual mem-
ory. This is not possible on 32-bit systems due to virtual address
space size constraints.

As with other solutions, /proc/kcore does not solve the issues on
its own. It is limited to only 64-bit systems and furthermore, its
presence on a system is dependent on an optional kernel configu-
ration option.We have encountered systems bothwith andwithout
/proc/kcore's existence. The /proc/kcore interface also suffers from
the same issues with page mapping, remapping and unmapping as
other interfaces like /dev/mem, which can result in kernel instability
during memory acquisition on multicore/multi-CPU systems.

Avoiding acquisition modules hinders structured analysis. The para-
sitemodule and /proc/kcore approaches tomemory acquisition both
rely on methods that avoid the creation of kernel modules specific
to each kernel version.While these techniques allow for acquisition
from a wide range of systems, they also push the kernel version
issue into the analysis phase.

In order for memory analysis tools to process Linux memory
images, they must know the address of key symbols as well as the
layout of data structures. This is also the exact information needed
to create kernel modules that can load against a running system. By
skipping the gathering of this information during acquisition, the
work is passed onto the investigator performing analysis. If the
investigator cannot create a profile, then he must fall back to un-
structured analysis (strings, grep, etc.) and forego the true power of
memory forensics.

Android acquisition. Attempting to acquire memory from Android
devices entails all of the previously described problems with Linux
acquisition along with several additional ones.

The issues facing Android memory acquisition include:

� The inability to bypass locked screens
� The need to root the device without rebooting the phone
� The need to gather the kernel headers and configuration for the
phone, for which vendors are incredibly slow to produce and
often never produce at all

� The lack of /proc/kcore functionality, as most of the millions of
Android devices are on the 32-bit ARM platform

� The optional presence of /dev/mem, and in the authors' testing,
attempting to read from /dev/mem on Android devices always
resets the phone. A valid memory capture has never been ob-
tained in this manner, in our experience.

These problems are described in even greater detail in W€achter
and Gruhn (2015) where the researchers attempted to acquire
memory from common Android devices in their stock configura-
tion. These tests mimicked scenarios encountered in the wild, and
the paper details each step taken and where the procedures failed
or succeeded. The community has struggled with these problems
with Android analysis for several years, but no solution has been
discovered (masdif, 2014).

Future directions
The use of the parasite method and of /proc/kcore simply push

the issue of kernel version independence on the analysis tool and
forensic analyst. Linux memory analysis tools are highly dependent
on per-version information and no research effort to date has
successfully made them less dependent across a wide variety of
systems. We feel that the most robust solution to this problem will
be a database of information about a wide range of systems that is
kept up-to-date, publicly available, and seamlessly supports inci-
dent response in unknown environments. This system would
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
support the needs of both acquisition and analysis tools, but will
require partners across industry in order for such an effort to be
sustainable.

For Android analysis, the reliance on full physical memory
dumpsmay need to be reevaluated due to the difficulty in obtaining
them. As discussed in Ali-Gombe (2012), there is great value in even
userland memory dumps that contain all of the data accessible to a
process. Particularly for law enforcement investigations, such data
will include passwords, emails, browsing history, chat messages,
call logs, and more. Userland analysis will put malware in-
vestigators at a disadvantage, however, as any type of sophisticated
userland or kernel-level malware will not be detected by such
approaches.

Area of focus e memory analysis

Historical approaches to memory analysis

Memory analysis started in the early 2000s when digital
forensic investigators realized that they could acquire memory
directly from a running system through previously available in-
terfaces. At the time, there were both rootkits that were difficult or
impossible to detect on a running system as well as anti-forensics
techniques that could fool live analysis tools. At this stage in the
history of memory forensics, however, there were no mature
frameworks for performing memory analysis, and instead, in-
vestigators had to rely on tools, such as strings, grep, and hex edi-
tors in order to find data of interest. This technique is now referred
to as ‘unstructured analysis’ as it simply treats a memory capture as
a raw stream of bytes. Unstructured analysis still has its uses, such
as when searching for strings generated by user activity or for
passwords and encryption keys, but thorough investigations
require structured analysis.

In early 2005, DFRWS released their annual challenge. This
challenge required investigators to perform thorough analysis of a
Windows memory sample. This led to the creation of several
memory analysis tools, including KntTools (Garner, 2005), Moon-
Sols (Suiche, 2007), the FATKit (Petroni et al., 2006), VolaTools
(Walters and Petroni, 2007), and Volatility (The volatility
framework, 2016). In the years since, several powerful open
source frameworks as well as commercial analysis tools have been
developed. There have also been numerous academic papers and
industry conference presentations that extend memory forensic
capabilities related to malware detection, defeating anti-forensics,
tracking user and attacker activity, and more.

In the following sections we discuss where these efforts have
taken memory forensics investigators and where further work is
needed to ensure that memory analysis remains an integral part of
digital forensics and incident response processes.

Current issue e userland platform analysis

Current state
The threat of rootkits and the inability to detect them on live

systems has led to a substantial amount of memory forensics
research time being geared towards detecting system state
anomalies in kernel memory. At the same time as this research
was taking place, operating system vendors also took action
against kernel rootkits. To start, both Microsoft and Apple decided
to enforce that all kernel drivers must be signed (Case and
Richard, 2016). This raises the bar for malicious actors as they
must steal code-signing certificates from legitimate entities in
order to get their driver loaded. While there are examples of
suspected nation-state actors and criminal groups performing
this task (http, 2016b; https, 2016c; http, 2016a) this is not
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e11 7
something that less skilled attackers will be capable of
accomplishing.

Microsoft also went a step further than Apple and implemented
Kernel Patch Protection, which is commonly referred to as Patch
Guard (Kernel patch protection, 2016). This protection mechanism
operates from the kernel and protects kernel code from being
modified as well as protects key data structures from being
tampered with, such as the process list, callback handlers, and
driver objects (Ionescu, 2015).

The rise of userland malware. The inability for malware authors to
easily load their rootkits into the kernel has led to a surge in
userland-based malware. Malware written to run in process
memory has many of the same capabilities as kernel level malware,
but is easier to write and does not require its code to be signed.
Evenwithout kernel access, userland malware can still spy on all of
a user's activities, such as logging keystrokes, monitoring web
cameras and microphones, stealing browser history, contact lists,
chat conversations, and more and then exfiltrating stolen data over
the network. Userland malware can also be extremely hard to
detect on the live system as it has the access necessary to hook the
APIs that live tools rely on in order to gather a view of a system's
runtime state.

Current capabilities. The threat of userland malware necessitates
that memory forensic frameworks provide robust detection capa-
bilities against the malicious activity. Currently, these tools have
strong capabilities in detecting traditional userland malware
techniques, such as code injection, code modifications (inline
hooks, API hooks, etc.) and manipulation of the runtime loader,
such as IAT/EAT patching on Windows, GOT/PLT patching on Linux,
and so on (Ligh et al., 2014). There is also strong support on Win-
dows for abuse of APIs through the native Windows GUI APIs
(Omfw, 2012).

Issues and limitations
While memory forensic frameworks do provide the previously

listed capabilities against userland malware, there is still much
more work left to be done. In particular, memory forensic does not
provide deep coverage of the many userland runtime platforms
provided by each operating system in order to make development
simpler and more standardized. Unfortunately, these platforms are
already being abused bymalware in order to maintain functionality
without leveraging the operating system components traditionally
checked by security agents and memory forensics tools. This leads
to a lack of detection capabilities as themalware is operating higher
in the application stack than the memory analysis algorithms know
how to inspect. For the remainder of this section, we will discuss
each of these platforms, along with the existing state of research,
if any.

Windows. Memory forensics is currently lacking in two key areas
for Windows systems. The first is the ability to detect Powershell
activity in a post mortem investigation. As discussed in a recent
Symantec report, Powershell is a key component of modern attacks,
particularly those by sophisticated actors (The increased use of
powershell in attacks, 2016). Beyond private toolsets, there are
also open source projects, such as Powershell Empire (Powershell
empire, 2016), that allow for pure Powershell post-exploitation
control of systems. Empire performs all of its Powershell work
completely in-memory, without actually executing power-

shell.exe on disk, and supports keylogging, credential theft,
lateral movement, and more. As the prevalence of Powershell
grows, the memory forensics community must respond to its ca-
pabilities, particularly given how many of the malicious scripts
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
reside only in memory. Current capabilities against Powershell
generally rely on string searching or looking for side-effects of the
actions taken by Powershell scripts and not the actual Powershell
activity itself.

Another important area in which further research is required is
post-mortem examination of the .NET runtime inside process
address spaces. .NET malware has already been found in numerous
real world attacks and malicious campaigns (SecureList, 2015;
Cisco, 2014; MalwareBytes, 2016), but there are currently no
memory forensic capabilities to detect such activity. Besides the
malware found in the wild that abused .NET, there are also several
open research projects that document the malicious activity. For
example, the NTCore project has a detailed article on how code
hooking and filtering can be performed at runtime (NTCore, 2016).
.NET also provides runtime function overriding. Function over-
riding allows for malicious code to substitute the legitimate
handler of functions calls with a malware-controlled imple-
mentation. This provides for awide range of abuse as all APIs can be
filtered, monitored, or completely replaced. There are currently no
memory forensic capabilities that specifically check for .NET run-
time manipulation by malware.

Mac OS X. Apple provides two runtimes to allow developers simple
and standard access to a wide range of system resources, including
memorymanagement, hardware devices, user and GUI activity, and
more. The first of these runtimes, Objective-C, is widely used
throughout the operating system, and is heavily targeted by mal-
ware. As discussed in a recent DFRWS paper (Case and Richard,
2016), the notorious Crisis malware abused Objective-C in order
to monitor user's browser activity, log system wide keystrokes,
activate the microphone and webcam, and to hide from live anal-
ysis. The main method that Crisis employed was runtime method
swizzling, which is the ability for code to replace method imple-
mentations at runtime. Crisis abused this feature to allow its own
malicious handlers to spy on and manipulate data that was being
processed by applications.

The previously referenced research provides the ability to detect
Objective-C abuses, but was heavily targeted towards the 10.9 and
10.10 versions of OS X. Furthermore, this work is heavily dependent
on the version of Objective-C being analyzed, much like memory
analysis tools are dependent on versions of the operating system. In
order for this work to becomewidely usable throughout the field, it
must be extended to more versions of OS X.

The second Apple-provided runtime platform is Swift (Apple,
2016). This platform is meant to replace Objective-C in the future,
but they are currently implemented in parallel. Unlike Objective-C,
there are currently no memory forensics capabilities targeted to-
wards Swift, leaving malware free to operate undetected.

Linux. While Linux is generally used from the command line, such
as through SSH, there are specific engineering fields and companies
that rely heavily on the Linux desktop. This is particularly true for
the many organizations that leverage high performance applica-
tions for processing tasks related to video editing, engineering, and
statistics. Crisis, along with several other malware samples found
the wild, target the Linux graphical runtime, XOrg, to spy on user
activity. As with Swift and .NET, there is currently no memory
forensic capability to examine or detect this activity.

Android. Android applications, such as those downloaded from the
Play Store, are powered by the Android runtime. On older versions
of Android, this runtime was Dalvik, and provided a Java-like
interface to develop applications. Memory forensics researchers
implemented deep memory analysis capabilities against Dalvik
(Case; Macht, 2012). These capabilities included recovery of all
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e118
loaded runtime classes, the name, type, and value of all static and
class variables of each class instance, and the handler address of
class methods. Leveraging this data, investigators were quickly able
to deal with packed malware, as the unpacked values would be in
memory, as well as quickly being able to focus on key features of
the malware. The main downside to this research is that it was
difficult to use across a wide range of phones due to the data
structures being highly dependent on the Dalvik version as well as
general Android acquisition issues as described previously.

The research performed against Dalvik, while novel, has quickly
becoming outdated as Dalvik is being replaced with a new Android
Runtime (ART) (Android, 2016). ART changes the Dalvik method of
JIT-based compilation with full compilation of applications as they
are installed on the device. This replaces the generally easy to
reverse engineer Dalvik classes with native code compiled to ELF
binaries. It also considerably changes how memory forensic anal-
ysis would approach the platform, and to date there has been no
public memory analysis research against ART.

Future directions
The increasing prevalence and power of userland malware re-

quires attention by the memory forensics community. The runtime
platforms that are implemented across operating systems are
fertile grounds for malware as the platforms have complete control
over the runtime and there are few security tools that adequately
check for malware tampering.

We advise that memory forensics research projects that target
these platforms do so in a manner that will discover a range of
malware tampering and also support a wide range of OS versions.
This process can be time consuming and difficult, however, as many
of the platforms are fully closed source or at least partially closed
source, which requires an experienced reverse engineer to perform
the initial analysis.

Current issue e application specific analysis

Current state
Memory forensics was traditionally used only during malware

analysis or in incident response when malware or advanced at-
tackers were present. This has quickly changed over the last several
years as investigators have realized the value of memory forensics
during all types of investigations. This includes investigations tar-
geting rogue insiders, anti-forensic applications, and during civil
and criminal proceedings involving electronic devices. In many of
these cases, memory forensics techniques are able to recover in-
formation that is not available to network or disk forensics. This
occurs with browsers that implement ‘private browsing’, wherein
many common artifacts are not written to disk, chat applications
that implement end-to-end encryption and disable on-disk log-
ging, such as Pidgin and Adium, and volume and file encryption
tools that encrypt all information written to local storage. Memory
forensics can assist in these situations since application informa-
tion that is written in encrypted form to the local disk or the
network is stored in cleartext while in memory for processing.

While highly useful, much of this information recovery is left to
manual analysis, such as through examination of strings, by the
investigator. We propose that to help scale investigations and to
ensure that all artifacts are recovered, that memory forensic
frameworks begin to deeply analyze application artifacts in a
structured manner.

Issues and limitations
Memory analysis frameworks currently implement few

application-specific analysis plugins. The Volatility framework has
the most, but only implements a handful of these, such as plugins
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
that recover information from Notepad, Notes, Pidgin/Adium, and
the Calendar application. While these are all useful, they represent
a small percentage of applications that hold forensic value. In the
following sections we describe other applications and services for
which investigations would greatly benefit from structured
analysis.

Web browsers and browser activity. Although disk forensics of
browser activity can often recover detailed information about a
user's previous browsing activity, it often still leaves much to be
desired. Particularly with the rise of HTTPS across websites, which
prevents caching of files to disk, investigators are often left with
only partial pictures of a user's historical behavior. For instance,
when tracking data exfiltration, an investigator may be able to see
that a person browsed to Dropbox or accessed his Gmail account,
but due to HTTPS, will be unable to determine what data was
actually transferred when relying solely on disk forensics. With
memory forensics this changes though as fragments of the session
will still be in memory. In real-world cases this has led to recovery
of the name and full path of files recovered, and in the case of
smaller files, complete recovery of the file itself.

A similar pain point is determining what data a user sent to web
applications. Inside corporations, internal applications maintain
highly sensitive information about employees and the company
itself. These applications are a prime target for malicious insiders,
but unfortunately web servers rarely store data sent through the
POST HTTP method. Since all sensitive data is sent through this
method, as opposed to GET, which makes data appear in the URL,
important information is missed by investigators. With memory
forensics techniques, this data can often be recovered and associ-
ated with specific web browser processes and user accounts.

This type of analysis currently requires an investigator to be
highly familiar with HTTP and the furthermore, the investigator
must manually analyze available evidence using strings and grep
output to piece things together. The addition of automatic extrac-
tion of this information would be of tremendous value to
investigators.

Office applications. Microsoft Office is installed on nearly every
corporate end-user system, but there is currently no memory
forensic support specific to this suite of applications. Analysis of
Office activity is relevant to both insider threat investigations as
well as malware investigations stemming from attacker's use of
malicious documents. On the insider threat side, being able to
determine the contents of documents viewed by users would be of
tremendous value. Many times in these scenarios the investigator
has proof that a user viewed a specific document, based on its file
path recovered from LNK files, jumplist databases, and the registry,
but the viewed file has since been deleted. This often stems from
rogue insiders who download many documents from across the
network, view them to look for relevant information, exfiltrate
them if interesting, and then delete them locally afterwards. In
order to definitively prove which documents a user was viewing,
the investigator will often attempt to tie back file contents to files
across the network. While this can be done through deleted file
recovery, this process can be extremely time consuming given how
many Office documents will appear on the storage devices of an
average corporate user. Leveraging memory forensics features
specific to Office analysis could greatly enhance this process.

On the malware side, the use of malicious macros and VBA
scripts has quickly returned to real world attacks (Volexity, 2016).
Sending malicious documents through email or other means is a
quick way for attackers to target specific users and the general lack
of security conscious behavior by non-technical end users means
that the attacks have a high chance of succeeding. Memory
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e11 9
forensics is currently only able to recover side effect activity of
malicious documents, such as if the payload injects code into
another process, but is not able to detect the malicious documents
themselves.

Web servers. Investigations of attacks through web servers and
services are often very frustrating. The only user-controlled data
that web servers are capable of logging is the data passed through
GET requests, which is data visible in the URL. As mentioned pre-
viously, any sensitive data is instead passed through POST, which is
not logged by default and usually not logged at all. This leaves in-
vestigators in frustrating situations inwhich they are attempting to
determine when attackers initially gained access to the system or
what commands were sent to a web-based backdoor, but none of
the relevant data is logged.

Memory forensics is often useful in these situations as the
remnants of data from the malicious interactions will often still be
stored in memory. This is true even of the unencrypted buffers of
HTTPS connections that would be fully encrypted on the network.
Again, however, memory forensic frameworks currently leave re-
covery of such data to the investigator and do not attempt to
automatically extract such records even though they can be of high
value.

Database servers. Investigations involving access to sensitive da-
tabases by attackers often face the same roadblocks as those
associated with investigating web browsers and web servers.
Database servers only log diagnostic and authentication informa-
tion to disk, which leads to an incomplete picture of activity.
Memory analysis can recover a plethora of data, including queries
executed, results returned by queries, commands executed through
functionality such as xp_cmdshell of MSSQL, and more. The diffi-
culty is that with current generation tools, this work must be per-
formed through unstructured analysis. With further research this
data could be automatically extracted. For example, with MSSQL
views, which are memory-only tables, a wide range of information,
such as which user accounts authenticated, which queries were run
bywhich user, as well as a full list of all queries executed against the
running database are available (Fowler, 2007). Memory forensics
frameworks that implement recovery of this information in a
structured manner will provide rapid recovery of highly actionable
artifacts.

Future directions
For memory forensics to be useful across all types of in-

vestigations and investigative scenarios, research must be per-
formed that targets specific userland applications and the data they
process. Current approaches to analysis of such data do not scale
and are not easily repeatable, as they rely on a mix of manual
extraction and examination of strings and the knowledge and skills
of the investigator.

Current issue e compressed, in-memory swap

Current state
The importance of the integration of swap data into memory

analysis has been discussed several times throughout this paper.
In those instances, the discussion focused on the integration of
swap from disk, but in modern operating system versions there is
also a separate store of swap in memory. First discussed in a fo-
rensics context in Case and Richard (2014), these in-memory
stores of swapped pages are highly compressed and provide a
substantial performance improvement versus pages being written
out to disk.
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
Issues and limitations
Swapped pages being in memory alleviates the issue of pagefile

collection as discussed previously, but also introduces additional
complications. To start, data being compressed in-memory means
that it will not be discoverable by unstructured methods such as
strings, grep, and Yara scans. These methods are still heavily relied
upon by investigators to recover information that cannot auto-
matically be recovered in a structured manner.

The other issue is that no memory forensics framework
currently implements transparent handling of compressed swap
pages. The referenced research implemented decompression ca-
pabilities for certain Linux and Mac Volatility plugins, but this
only applied to particular portions of the framework. With the
ongoing development of Volatility 3, and the easy incorporation of
secondary memory sources, the integration of these swap sources
should occur, but in the meantime investigations are missing ar-
tifacts from the compressed stores. As the success of these stores
was realized on Mac and Linux, Microsoft decided to implement
the functionality starting in Windows 10 (WindowsITPro, 2016).
There is currently no research that documents the algorithms
used by this compressed store, which means that the
compressed pages are essentially inaccessible to memory foren-
sics investigators.

Future directions
The heavily reliance of OS X, and now Windows, on in-memory

compressed stores means that memory forensics frameworks must
incorporate them into their page translation algorithms. Just as
these frameworks must be adapted to read page files from disk in a
transparent manner, they must also be able to recognize when
pages are compressed and then decompress them transparently for
analysis. Only then will the full range of information stored
in memory become available. This will also allow traditional
unstructured analysis to become fully usable again as the frame-
work can extract and present the decompressed pages to the
investigator.

Current issue e Windows 10

Current state
Windows 10 not only changes approaches related to memory

acquisition, but also has effects on memory analysis. Based on
current research, these include the introduction of native Linux
support as well as changes to operating system update cycles.

Issues and limitations

Native Linux
Starting with Windows 10, Microsoft introduced a native

capability to run Linux applications inside of Windows (MSDN,
2016b). There is currently no forensics-oriented research on this
new feature, but noted security researcher Alex Ionescu has pre-
sented extensive research on this topic. His work was mostly
focused on the architecture itself and how it appears on the live
system, but this a foundation on which future forensics research
could be performed.

Rapid kernel updates
Microsoft traditionally saved major updates to the operating

system for service packs. This model has changed though in order
for Microsoft to more quickly respond to security issues as well as
adding features. This new approach to updates affects Windows 7,
8, and 10, but most heavily affects Windows 10. The rapid devel-
opment of changes, sometimes in less than a week between re-
leases, means that memory analysis tools must be constantly
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e1110
checked against the latest versions of the OS in order to detect
major changes to data structures and algorithms.

Future directions

Native Linux
The introduction of Linux capabilities intoWindowswill require

substantial forensics research. Ionescu has done an excellent job of
documenting the current implementation, but future research faces
a few hurdles. The first is that reverse engineering of a large sub-
system is required for any substantial effort. Ionescu is one of the
best Windows reverse engineers in the industry, which means his
research efficiency is difficult to widely replicate. Furthermore, his
research notes state that the Linux implementation has seen sub-
stantial changes since its introduction, which means that any
research efforts may become quickly outdated until the interfaces
and subsystem becomes more stabilized.

Rapid kernel updates
The introduction of rapid kernel updates changes the way that

memory forensics tools traditionally represented the data struc-
tures and algorithms of analyzed operating systems. For example,
Volatility 2.x distributes Windows profiles on service pack
boundaries, such as a profile for Windows 7 service pack 1 or
Windows XP service pack 2. This model is now inadequate as
major changes to key data structures occur in minor releases of
the operating system. This has led to the Volatility developers
needing to generate new profiles for the subset of updates that
change key data structures. This also requires the end user to pick
specific sub-versions of an operating system to obtain complete
analysis.

Other memory analysis tools, such as WinDBG (MSDN, 2016c),
Rekall (Google, 2016), and the future Volatility 3 work around this
issue by incorporating debug symbols (PDB files) into analysis.
Incorporation of PDB files fixes the issue related to data structure
mismatches between subversions, but does not automatically fix
issues when algorithms change between versions. Ongoing work
with Windows 10 shows that these changes occur frequently and
require manual updates to the processing algorithms of memory
analysis frameworks.

Sole reliance on PDBs also introduces practical problems with
memory analysis as not all modules have PDB files, such as the
network stack (tcpip.sys) and the GUI subsystem (win32k.sys).
These means that manual reverse engineering must still be done
after updates that break existing analysis plugins. The use of PDBs is
also cumbersome to investigators who must download and main-
tain a set of PDBs for all analyzed systems. This is especially difficult
for investigators who work in closed environments, which is
prevalent in government organizations and also many private fo-
rensics firms.

Technologies without memory forensics coverage

So far, we have discussed platforms and operating systems for
which memory forensics capabilities exist, but which require
further work. We conclude the paper by discussing other important
systems for which memory forensics is sorely needed, but for
which no physical memory analysis capabilities exist.

Apple iOS

After Android, Apple's iOS, which powers iPhones and iPads, has
the largest market share in the world. Due to its popularity and
security features, it is often the platform of choice for politicians,
businessmen, dignitaries, diplomats, and other people who hold
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
very sensitive information. This has led to several samples of
malware that targeted the platform (Lookout, 2016; theiphonewiki,
2016) in order to spy on user activity.

To date, there has been no public memory forensics research
published for iOS devices. The largest stumbling block to such
research is the inability to directly acquire physical memory. Even
on jailbroken devices, users cannot directly load kernel modules as
the facilities are not present in the operating system. This prevents
a tool, such as LiME, from being written for Apple's iOS. It is also in
contrast to Android where root users are able to directly load kernel
modules.

Gaining kernel access to iOS devices is not impossible, as illus-
trated by the number of available kernel exploits. In fact, Stefan
Essar, one of the most noted members of the jailbreak community,
developed a hardware kernel debugger for older versions of the
iPhone (Esser, 2011). Leveraging exploits to enter the kernel and
later get a kernel module loaded seems like a plausible avenue for
memory forensics. It would still be highly dependent on the phone
in question though as the phone would either have to already be
jailbroken or be vulnerable to exploits that allow for triggering of a
kernel vulnerability without a reboot. Furthermore, it's very likely
that any vulnerabilities exploited to allow memory acquisition will
be quickly patched.

Chromebooks

Google's Chromebooks are locked down computing “appliances”
that run a heavily customized version of Linux. Chromebooks pro-
vide no native access to the file system or to memory. For security
reasons, users are shielded fromall parts of theoperating systemthat
digital forensics analysts traditionally collect for analysis. As with
iOS, unless there is an exploit that allows for bypassingof the built-in
security measures, then full forensics collection is not possible.

The Internet of Things

The billions of devices that power the “Internet of Things” (IOT),
are increasingly being used in situations that require forensic
analysis. These include devices that track information related to
civil matters as well as traditional criminal activity on top of recent
major botnet attacks (Schneier, 2016; ThreatPost, 2016). Many of
these devices are built upon Linux, and due to their restrictive ac-
cess environments and lackluster vendor support for 3rd party
kernel code, it is difficult or impossible to acquire memory samples.
Furthermore, devices running custom operating systems and
hardware have nomemory forensics support at all. As these devices
become more and more common, the forensics community must
perform research to support a wide range of devices, all of which
run different operating system versions, hardware architectures,
and software configurations. The one thing in common with these
devices is the goal of preventing outside access. It seems likely that
any approach to memory acquisition of IOT devices will require
chaining acquisition tools with exploits. Adoption of such an
approach will have raise immediate legal questions about admis-
sibility as well as technical questions to ensure stable acquisition.
As with iOS devices, any vulnerabilities that can be leveraged to
provide memory acquisition will likely be patched.

Closing thoughts

Memory forensics has proven to be one of themost versatile and
powerful ways to analyze computer systems. It has become a daily
part of incident response procedures as well as the driving force
behind proactive analysis of environments for malicious activity. In
this paper we discussed historical work that was performed to
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/



A. Case, G.G. Richard III / Digital Investigation xxx (2016) 1e11 11
enable the current power of memory forensics as well as im-
provements that should be made in order to ensure that memory
forensics stays at the forefront of defensive technology.

References

Ali-Gombe, A.I., 2012. Volatile Memory Message Carving: a “Per Process Basis”
Approach.

Amazon EC2 Container Service Developer Guide, 2016. http://docs.aws.amazon.
com/AmazonECS/latest/developerguide/Welcome.html.

Android, 2016. Art and Dalvik. https://source.android.com/devices/tech/dalvik/.
Apple, 2016. Swift Developer Documentation. https://developer.apple.com/swift/.
Burdach, M., 2006. Physical Memory Forensics. https://www.blackhat.com/

presentations/bh-usa-06/BH-US-06-Burdach.pdf.
Carvey, H., 2005. Page Smear. http://seclists.org/incidents/2005/Jun/22.
Case, A., Forensic memory analysis of android's dalvik vm, in: Source Seattle.
Case, A., 2012. Phalanx 2 Revealed Using Volatility. https://volatility-labs.blogspot.

com/2012/10/phalanx-2-revealed-using-volatility-to.html.
Case, A., Richard III, G.G., 2014. In lieu of swap: analyzing compressed ram in mac os

x and linux. In: Proceedings of the 14th Annual Digital Forensics Research
Workshop (DFRWS 2014).

Case, A., Richard III, G.G., 2016. Detecting objective-c malware through memory
forensics. In: Proceedings of the 16th Annual Digital Forensics Research
Workshop (DFRWS 2016).

Cisco, 2014. Reversing multilayer.net Malware. https://blogs.cisco.com/security/
talos/reversing-multilayer-net-malware.

CrazyLord, 2002. Playing with windows/dev/(k)mem. http://www.phrack.org/
archives/issues/59/16.txt.

Device guard deployment guide, 2016. https://technet.microsoft.com/en-us/itpro/
windows/keep-secure/device-guard-deployment-guide.

Esser, S., 2011. Targeting the Ios Kernel. http://www.slideshare.net/i0n1c/syscan-
singapore-2011-stefan-esser-targeting-the-ios-kernel.

Farmer, D., Venema, W., 2005. Forensic Discovery, vol. 6. Addison-Wesley.
Fowler, K., 2007. Sql Server Database Forensics. https://www.blackhat.com/

presentations/bh-usa-07/Fowler/Presentation/bh-usa-07-fowler.pdf.
Garner, G., 2005. Knt Tools. http://www.gmgsystemsinc/knttools.
Garner, G., 2016. Threat Protection for Linux. https://www.forcepoint.com/product/

security-cloud/threat-protection-linux.
Geek, H., 2015. What Is swapfile.sys and How do You Delete it? http://www.

howtogeek.com/225143/what-is-swapfile.sys-and-how-do-you-delete-it/.
Google, 2016. Rekall. https://github.com/google/rekall.
http://arstechnica.com/security/2016/03/to-bypass-code-signing-checks-malware-

gang-steals-lots-of-certificates/, 2016.
http://www.pcworld.com/article/3048417/malware-authors-quickly-adopt-sha-2-

through-stolen-code-signing-certificates.html, 2016.
https://www.symantec.com/connect/blogs/suckfly-revealing-secret-life-your-code-

signing-certificates, 2016.
Ionescu, A., 2015. What are little patchguards made of? http://www.alex-ionescu.

com/?p¼290.
Kernel patch protection, 2016. https://en.wikipedia.org/wiki/Kernel_Patch_Protection.
Ligh, M., 2012. Movp 3.1 Detecting Malware Hooks in the Windows gui Subsystem.

https://volatility-labs.blogspot.com/2012/09/movp-31-detecting-malware-
hooks-in.html.

Ligh, M., Case, A., Levy, J., Walters, A., 2014. The Art of Memory Forensics: Detecting
Malware and Threats in Windows, Linux, and Mac Memory. Wiley, New York.

Lookout, 2016. Sophisticated, Persistent Mobile Attack against High-value Targets
on Ios. https://blog.lookout.com/blog/2016/08/25/trident-pegasus/.

Macht, H., 2012. Dalvikvm Support for Volatility. http://lists.volatilesystems.com/
Please cite this article in press as: Case, A., Richard, III, G.G., Memory foren
10.1016/j.diin.2016.12.004
pipermail/vol-dev/2012-October/000187.html.
MalwareBytes, 2016. Unpacking yet another.net Crypter. https://blog.malwarebytes.

com/threat-analysis/2016/07/unpacking-yet-another-net-crypter/.
masdif, 2014. Lime in Real World Android Forensics. http://lists.volatilesystems.

com/pipermail/vol-users/2014-May/001254.html.
MSDN, 2016. Intro to the Universal Windows Platform. https://msdn.microsoft.com/

en-us/windows/uwp/get-started/universal-application-platform-guide.
MSDN, 2016. Bash on Ubuntu on Windows. https://msdn.microsoft.com/en-us/

commandline/wsl/about.
MSDN, 2016. Download the Wdk, Windbg, and Associated Tools. https://developer.

microsoft.com/en-us/windows/hardware/windows-driver-kit.
niekt0, fmem, 2011. http://hysteria.cz/niekt0/.
NTCore,.net Internals and Code Injection, 2016. http://www.ntcore.com/files/

netint_injection.htm.
Omfw, 2012. Malware in the Windows gui Subsystem. https://volatility-labs.

blogspot.com/2012/10/omfw-2012-malware-in-windows-gui.html.
Petroni, N., Walters, A., Fraser, T., Arbaugh, W., 2006. Fatkit: a framework for the

extraction and analysis of digital forensic data from volatile system memory.
Digit. Investig. 3.

Powershell empire, 2016. https://www.powershellempire.com.
Rutkowska, J., Tereshkin, A., 2008. Bluepilling the xen hypervisor. Black Hat USA.
Scaling Based on CPU or Load Balancing serving capacity, 2016. https://cloud.google.

com/compute/docs/autoscaler/scaling-cpu-load-balancing.
Schatz, B., 2007. Bodysnatcher: towards reliable volatile memory acquisition by

software. Digit. Investig. 4, 126e134.
Schneier, B., 2016. Ddos Attacks Against dyn. https://www.schneier.com/blog/

archives/2016/10/ddos_attacks_ag.html.
SecureList, 2015. The Rise of.net and Powershell Malware. https://securelist.com/

blog/research/72417/the-rise-of-net-and-powershell-malware/.
Stüttgen, J., Cohen, M., 2014. Robust linux memory acquisition with minimal target

impact. Digit. Investig. 11, S112eS119.
Suiche, M., 2007. Moonsols.
Suiche, M., 2008. Windows Hibernation File for Fun nprofit. Black Hat.
Sylve, J., Case, A., Marziale, L., Richard III, G.G., 2012. Acquisition and analysis of

volatile memory from android devices. Digit. Investig. 8.
Sylve, J., Marziale, L., Richard III, G.G., 2016. Modern windows hibernation file

analysis. Digit. Investig. (in press).
The increased use of powershell in attacks, 2016. https://www.overleaf.com/

6919029ggkynfmkjvss#/23651472/.
The Volatility Framework: Volatile Memory Artifact extraction Utility Framework,

2016. https://github.com/volatilityfoundation/volatility.
theiphonewiki, 2016. Malware for ios. https://www.theiphonewiki.com/wiki/

Malware_for_iOS#Tools_used_by_governments_.28and_similar.29_to_target_
individuals.

ThreatPost, 2016. Mirai-fueled iot Botnet Behind ddos Attacks on dns Providers.
https://threatpost.com/mirai-fueled-iot-botnet-behind-ddos-attacks-on-dns-
providers/121475/.

Volexity, 2016. Powerduke: Widespread Post-election Spear Phishing Campaigns
Targeting Think Tanks and ngos. https://www.volexity.com/blog/2016/11/09/
powerduke-post-election-spear-phishing-campaigns-targeting-think-tanks-
and-ngos/.

W€achter, P., Gruhn, M., Practicability study of android volatile memory forensic
research, in: Information Forensics and Security (WIFS), 2015 IEEE International
Workshop on, IEEE, pp. 1e6.

Walters, A., Petroni, N., 2007. Volatools. https://www.blackhat.com/presentations/
bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf.

WindowsITPro, 2016. Understanding Compressed Memory in Windows 10 Anniver-
sary Edition. http://windowsitpro.com/windows-10/understanding-compressed-
memory-windows-10-anniversary-edition.
sics: The path forward, Digital Investigation (2016), http://dx.doi.org/

http://refhub.elsevier.com/S1742-2876(16)30152-9/sref2
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref2
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://source.android.com/devices/tech/dalvik/
https://developer.apple.com/swift/
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Burdach.pdf
http://seclists.org/incidents/2005/Jun/22
https://volatility-labs.blogspot.com/2012/10/phalanx-2-revealed-using-volatility-to.html
https://volatility-labs.blogspot.com/2012/10/phalanx-2-revealed-using-volatility-to.html
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref10
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref10
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref10
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref11
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref11
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref11
https://blogs.cisco.com/security/talos/reversing-multilayer-net-malware
https://blogs.cisco.com/security/talos/reversing-multilayer-net-malware
http://www.phrack.org/archives/issues/59/16.txt
http://www.phrack.org/archives/issues/59/16.txt
https://technet.microsoft.com/en-us/itpro/windows/keep-secure/device-guard-deployment-guide
https://technet.microsoft.com/en-us/itpro/windows/keep-secure/device-guard-deployment-guide
http://www.slideshare.net/i0n1c/syscan-singapore-2011-stefan-esser-targeting-the-ios-kernel
http://www.slideshare.net/i0n1c/syscan-singapore-2011-stefan-esser-targeting-the-ios-kernel
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref16
https://www.blackhat.com/presentations/bh-usa-07/Fowler/Presentation/bh-usa-07-fowler.pdf
https://www.blackhat.com/presentations/bh-usa-07/Fowler/Presentation/bh-usa-07-fowler.pdf
http://www.gmgsystemsinc/knttools
https://www.forcepoint.com/product/security-cloud/threat-protection-linux
https://www.forcepoint.com/product/security-cloud/threat-protection-linux
http://www.howtogeek.com/225143/what-is-swapfile.sys-and-how-do-you-delete-it/
http://www.howtogeek.com/225143/what-is-swapfile.sys-and-how-do-you-delete-it/
https://github.com/google/rekall
http://arstechnica.com/security/2016/03/to-bypass-code-signing-checks-malware-gang-steals-lots-of-certificates/
http://arstechnica.com/security/2016/03/to-bypass-code-signing-checks-malware-gang-steals-lots-of-certificates/
http://www.pcworld.com/article/3048417/malware-authors-quickly-adopt-sha-2-through-stolen-code-signing-certificates.html
http://www.pcworld.com/article/3048417/malware-authors-quickly-adopt-sha-2-through-stolen-code-signing-certificates.html
https://www.symantec.com/connect/blogs/suckfly-revealing-secret-life-your-code-signing-certificates
https://www.symantec.com/connect/blogs/suckfly-revealing-secret-life-your-code-signing-certificates
http://www.alex-ionescu.com/?p=290
http://www.alex-ionescu.com/?p=290
http://www.alex-ionescu.com/?p=290
https://en.wikipedia.org/wiki/Kernel_Patch_Protection
https://volatility-labs.blogspot.com/2012/09/movp-31-detecting-malware-hooks-in.html
https://volatility-labs.blogspot.com/2012/09/movp-31-detecting-malware-hooks-in.html
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref28
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref28
https://blog.lookout.com/blog/2016/08/25/trident-pegasus/
http://lists.volatilesystems.com/pipermail/vol-dev/2012-October/000187.html
http://lists.volatilesystems.com/pipermail/vol-dev/2012-October/000187.html
https://blog.malwarebytes.com/threat-analysis/2016/07/unpacking-yet-another-net-crypter/
https://blog.malwarebytes.com/threat-analysis/2016/07/unpacking-yet-another-net-crypter/
http://lists.volatilesystems.com/pipermail/vol-users/2014-May/001254.html
http://lists.volatilesystems.com/pipermail/vol-users/2014-May/001254.html
https://msdn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://msdn.microsoft.com/en-us/commandline/wsl/about
https://msdn.microsoft.com/en-us/commandline/wsl/about
https://developer.microsoft.com/en-us/windows/hardware/windows-driver-kit
https://developer.microsoft.com/en-us/windows/hardware/windows-driver-kit
http://hysteria.cz/niekt0/
http://www.ntcore.com/files/netint_injection.htm
http://www.ntcore.com/files/netint_injection.htm
https://volatility-labs.blogspot.com/2012/10/omfw-2012-malware-in-windows-gui.html
https://volatility-labs.blogspot.com/2012/10/omfw-2012-malware-in-windows-gui.html
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref39
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref39
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref39
https://www.powershellempire.com
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref41
https://cloud.google.com/compute/docs/autoscaler/scaling-cpu-load-balancing
https://cloud.google.com/compute/docs/autoscaler/scaling-cpu-load-balancing
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref43
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref43
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref43
https://www.schneier.com/blog/archives/2016/10/ddos_attacks_ag.html
https://www.schneier.com/blog/archives/2016/10/ddos_attacks_ag.html
https://securelist.com/blog/research/72417/the-rise-of-net-and-powershell-malware/
https://securelist.com/blog/research/72417/the-rise-of-net-and-powershell-malware/
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref46
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref46
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref46
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref47
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref48
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref49
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref49
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref50
http://refhub.elsevier.com/S1742-2876(16)30152-9/sref50
https://www.overleaf.com/6919029ggkynfmkjvss#/23651472/
https://www.overleaf.com/6919029ggkynfmkjvss#/23651472/
https://github.com/volatilityfoundation/volatility
https://www.theiphonewiki.com/wiki/Malware_for_iOS#Tools_used_by_governments_.28and_similar.29_to_target_individuals
https://www.theiphonewiki.com/wiki/Malware_for_iOS#Tools_used_by_governments_.28and_similar.29_to_target_individuals
https://www.theiphonewiki.com/wiki/Malware_for_iOS#Tools_used_by_governments_.28and_similar.29_to_target_individuals
https://threatpost.com/mirai-fueled-iot-botnet-behind-ddos-attacks-on-dns-providers/121475/
https://threatpost.com/mirai-fueled-iot-botnet-behind-ddos-attacks-on-dns-providers/121475/
https://www.volexity.com/blog/2016/11/09/powerduke-post-election-spear-phishing-campaigns-targeting-think-tanks-and-ngos/
https://www.volexity.com/blog/2016/11/09/powerduke-post-election-spear-phishing-campaigns-targeting-think-tanks-and-ngos/
https://www.volexity.com/blog/2016/11/09/powerduke-post-election-spear-phishing-campaigns-targeting-think-tanks-and-ngos/
https://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf
https://www.blackhat.com/presentations/bh-dc-07/Walters/Paper/bh-dc-07-Walters-WP.pdf
http://windowsitpro.com/windows-10/understanding-compressed-memory-windows-10-anniversary-edition
http://windowsitpro.com/windows-10/understanding-compressed-memory-windows-10-anniversary-edition

	Memory forensics: The path forward
	Introduction
	Area of focus – memory acquisition
	Historical approaches to memory acquisition
	Current issues – page smearing
	Current state
	Issues and limitations
	Future directions
	Leveraging virtual machine hardware extensions
	Smear-aware acquisition tools


	Current issue – incorporation of non-resident pages
	Current state
	Issues and limitations
	Future directions

	Current issue – changes to Windows hibernation file analysis
	Current state
	Issues and limitations
	Future directions

	Current issue – Windows 10
	Current state
	Issues and limitations
	Device Guard
	Swapfile.sys
	Universal and Metro Apps

	Future directions
	Device Guard
	Swapfile.sys
	Universal and Metro Apps


	Linux and Android acquisition
	Current state
	Issues and limitations
	Leveraging a kernel module database
	Leveraging existing kernel modules
	Leveraging /proc/kcore
	Avoiding acquisition modules hinders structured analysis
	Android acquisition

	Future directions


	Area of focus – memory analysis
	Historical approaches to memory analysis
	Current issue – userland platform analysis
	Current state
	The rise of userland malware
	Current capabilities

	Issues and limitations
	Windows
	Mac OS X
	Linux
	Android

	Future directions

	Current issue – application specific analysis
	Current state
	Issues and limitations
	Web browsers and browser activity
	Office applications
	Web servers
	Database servers

	Future directions

	Current issue – compressed, in-memory swap
	Current state
	Issues and limitations
	Future directions

	Current issue – Windows 10
	Current state

	Issues and limitations
	Native Linux
	Rapid kernel updates

	Future directions
	Native Linux
	Rapid kernel updates


	Technologies without memory forensics coverage
	Apple iOS
	Chromebooks
	The Internet of Things

	Closing thoughts
	References


