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ABSTRACT

In recent years process heap-based attacks have increased
significantly. These attacks exploit the system under attack
via the heap, typically by using a heap spraying attack. A
large number of malicious files and URLs offering danger-
ous contents are potentially encountered every day, both by
client-side and server-side applications. Static and dynamic
methods have been proposed to detect heap-based attacks
in the literature, using various methodologies like NOZZLE.
The main drawback with existing techniques is that they
either consume too many resources or are complicated to
implement. In this paper we propose Atomizer, which of-
floads process heap analysis for guest VMs to the privileged
domain using Virtual Machine Introspection (VMI). Atom-
izer APIs can be used to implement various heap analyzing
algorithms on processes running inside a VM. A simple heap-
spray detection algorithm using Atomizer was implemented
to determine the effectiveness of Atomizer. Use of Atomizer
cannot be detected by in-guest VM malware, has minimal
impact on the cloud server, is very effective in detecting heap
spraying malwares, and is simple to deploy. Our architec-
ture is particularly applicable to cloud environments where
virtualization is used to host guest VMs.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software

General Terms
Security, Measurement, Experimentation

Keywords
Xen, Introspection, Cloud Computing

1. INTRODUCTION

Recent advances in operating system-based security mecha-
nisms like Address Space Layout Randomization (ASLR) [22]
and Data Execution Prevention (DEP) [3], as well as compiler-
based security mechanisms like stack protection [13] have
made it more difficult for malware developers to inject code
to exploit computer systems. This is why more and more
hackers have turned to heap-based techniques such as heap
spray attacks [6] and just-in-time (JIT) spraying [11] to by-
pass these security mechanisms. These techniques rely heav-
ily on the heap of a process to bypass protections and execute
the exploit. This makes monitoring the activities that occur
in the heap extremely important. Unfortunately, monitor-
ing heap space is a resource intensive task and many heap
monitoring tools do not examine the heap contents for per-
formance reasons, instead relying on hooking or diverting
system calls to detect malware in the heap.

In this paper we present Atomizer, which browses through
the heaps of processes running inside VMs and looks for
heap-based activities like heap spray. Atomizer runs on a
privileged VM and uses VMI to access the heaps of the pro-
cesses inside virtual machines running on a cloud server.
Currently, only the heaps that are allocated by the operat-
ing system for the processes can be accessed by Atomizer.
Application-generated heaps (e.g., those created by the Java
Virtual Machine (JVM)) can also be examined by Atom-
izer, through available Atomizer APIs. Atomizer requires
no changes to be made to virtual machine manager(VMM),
VMs and the programs being monitored. Atomizer’s archi-
tecture makes it difficult for any malware inside the VM to
detect and disable it. Atomizer also monitors all the pages
of the heap that have been swapped out of main memory.
Atomizer is designed to be modular, so that new features
can easily be added. The most popular type of heap-based
attacks are heap sprays [19], that’s why in this paper we are
mainly focused on heap spray attacks, although Atomizer
can be used for detecting any heap-based attacks.

Heap Spraying techniques involve instructing client side lan-
guages such as JavaScript to allocate large blocks of heap
memory (50-200MB) containing malicious shellcode and NOP
sleds that “slide” into the shellcode. The final piece of the
puzzle relies on overwriting a function pointer to point to a
random location within the large NOP sled heap object [2],



which typically requires a separate exploit. Large blocks of
heap spray can easily be detected by simple scans, however,
newer and less intrusive heap spray attacks that more ac-
curately manipulate the layout of the application heap lay-
out increase reliability and precision, without the need for
large blocks of heap spray. Techniques like Feng Shui Heap
Spray [23] defragments and makes holes in the heap object
to insure that the function pointer is readily available and
positioned properly for smashing with a heap overflow [15].

Techniques like JIT spraying [11] have been developed to
bypass both ASLR and DEP. JIT spraying utilizes knowl-
edge about a JIT compiler’s architecture to spray the heap
with executable code that can then be compiled by the JIT
compiler. The JIT heap spray is constructed large enough
to overwhelm and bypass ASLR. JIT spray uses return ori-
ented programming (ROP) [20] gadgets to mark the heap
pages as executable so that the contents of the pages can
be executed. JIT spray uses a leaked pointer, which is es-
sentially a random heap address, to jump to that location
and follows the NOP sled down to the JIT shell code that is
executed to exploit the system. Modern exploitation tech-
niques, such JIT spraying, makes it even more important to
look for malicious activities inside the heap of a process.

The rest of the paper is organized as follows: Section 2 sum-
marizes related work. Section 3 presents Atomizer and de-
tails its architectural assumptions. Section 4 outlines the
implementation and Section 5 the evaluation. Section 6 con-
cludes the paper.

2. RELATED WORK

There has been a large volume of work published on heap
spray detection. Most of the work focuses on JavaScript
analysis and classifying web contents on the basis of dy-
namic and static features. This section covers the existing
approaches and tools that are most related to Atomizer.

Cova et al. propose JSAND [12] that provides a frame-
work to emulate JavaScript code and discover the key fea-
tures that are most commonly found in malware. These fea-
tures include code obfuscation, environment analysis tech-
niques, and exploitation mechanisms. JSAND uses machine-
learning techniques to establish the characteristics of nor-
mal JavaScript code and uses these characteristics to detect
anomalous code [12]. JSAND is a finger printing technique
that can be evaded by a clever malware developer. Tech-
niques like time-based checks and exception handling de-
scribed in [17] can be used to evade the emulation part of
JSAND. Unlike Atomizer, JSAND relies heavily on emula-
tion which can have many limitations [17].

Ratanaworabhan et al. propose NOZZLE [19] which per-
forms static control flow analysis of parts of the heap, inter-
preting them as code segments to detect malicious content.
NOZZLE accomplishes this by intercepting common heap
allocating function calls and gathering information about
the heap, as well as its content. This technique is browser-
specific and could potentially be detected by the attacker.
As described by NOZZLE, an attacker could time her heap
sprays to avoid detection by this mechanism. Scanning heap
objects via introspection requires no memory hooks and
makes the entire guest operating system oblivious to heap

analysis. NOZZLE also poses a 10% overhead, which has led
to the development of an improved version of the programs
called ZOZZLE [14].

LeMasters [18] demonstrates a simple Heap Inspector tool
that visualizes heap sprayed NOP sleds by searching for byte
patterns that resemble NOP instructions. It does so by in-
jecting a DLL into the process that is being analyzed to
create a gateway to the heap object. It further relies on the
windows API to gather the heap data. All this combined
not only significantly impacts the performance of the guest
system, but also is detectable by malware.
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Figure 1: Atomizer Architecture

3. ATOMIZER ARCHITECTURE

The Atomizer infrastructure consists mainly of three compo-
nents, Process Information Extractor, Heap Extractor and
Swapped Heap Page Extractor as shown in Figure 1.

The first component, Process Information Extractor, is re-
sponsible for determining the basic attributes of the process
we are monitoring. These basic attributes of the process
include the internal operating system structures that pro-
vide us with valuable information about the location of the
process in physical memory. The location of the heap is ex-
tracted in the second step called Heap Finder. There might
be various heaps in the process and the location of all of
them are passed on to the next component, Heap Extractor.

The Heap Extractor component receives the physical mem-
ory locations of the heaps from the first component of the
Atomizer and extracts all the heap pages of the process. In
a typical system some heap pages may be swapped out of
physical memory for efficiency, so the Atomizer architecture
also has the capability to access pages that are currently
swapped out. When the Heap Extractor module encounters
a swapped heap page, it uses the Swapped Heap Page Mod-
ule to access those pages. The Swapped Heap Page Extrac-
tor component of the Atomizer uses information about the
guest OS’ swapping architecture to access swapped pages.

The Atomizer is designed to work in a cloud environment to
monitor multiple VMs running in the environment using a
single privileged system. The VMI interface provides access
to the memory of all the VMs running on a single physical
server. The Atomizer can browse through the heaps of all
the processes running in these VMs with low performance
impact, i.e., without using many of resources of the cloud



server. The Atomizer has a modular design which allows
adding support for various operating systems. The Heap
Analysis Module part is also designed in such a way that
adding additional modules to enhance heap analysis is very
straightforward. In particular, the Heap Extractor mod-
ule provides an application programmable interface (API),
allowing new heap analysis techniques to use the Heap Ex-
tractor API’s to access heap memory. These API’s can be
used to detect any type of heap-based attacks.

4. IMPLEMENTATION

We developed a proof of concept prototype of Atomizer on
XEN [9] that had Microsoft Windows XP (Service Pack 2)
VMs running. We used the libVMI library [8] to introspect
the heap of web browsers (Internet Explorer or Firefox)
running on Windows XP virtual machines. We also used
libguestfs [7] to access the page file of memory pages that
have been swapped to the hard drive.

4.1 Process Information Extraction

Windows operating systems maintain information about ex-
ecuting processes in Process Environment Block (PEB) struc-
tures. In this part of the implementation, Atomizer looks
for memory address of the PEB structure of the process. It
goes through known memory addresses to locate the PEB
structure using appropriate PEB signatures [21]. Once the
location of the PEB structure is found the information re-
garding the process is extracted from it. That information
includes the location of the heaps, number of heaps available
and maximum number of heaps allowed by the OS. This in-
formation is then forwarded to the next component of the
Atomizer.

Algorithm 1 Heap Memory Browsing using VAD tree

for ;‘ (7 0x7F FD0000 to 0z7F FDF000 do

(5 ==1i+ 0wa4)&&(1 == i + Oxa8)) then
PEB =1
break
end if
HEA UI\/I := PEB i:t» 0x88
HEAPADDRESS := PEB + 0x090

heapCounter := 0
while heapCounter < HEAPNUM do
HEAPNODE := HEAPADDRESS +(4 * heapCounter)
segmentCounter := 0
while segmentCounter < 64 do
HEAPSEGMENT := HEAPNODE + 0x58 + (4 * segmentCounter)
HEAPENTRY := HEAPSEGMENT + 0x20
while (HEAPENTRY + 0z005) # 0 do
EEAESI\IEMORY(HEAPENTRY HEAPSIZE)
HEAPENTRY := HEAPENTRY + (HEAPSIZE * 8)
end while
segmentCounter++
end while
heapCounter++
end while

4.2 Heap Extractor

The Heap Extractor component of Atomizer provides the
main facility for browsing through the heap of the process
using the virtual address descriptors (VAD) obtained via in-
trospection. The memory manager in Windows maintains
a set of VADs that describes the status of the process’s ad-
dress space [21]. To find the VAD tree of a process be-
ing monitored we use the process environment block struc-
ture (PEB) information received from Process Information
Extractor. Using this information, we browse through all
the heap nodes, heap segments, and heap entries in vari-
ous heaps of a process. Algorithm 1 describes the algorithm
used to browse through the entire heap. If a heap page en-
try is in the VAD tree and not in physical memory, than
there is a possibility that the heap page has been swapped

out of memory. As modern heap sprays do not require large
amounts of NOP sleds, it is important that those heap pages
are also examined. Details of how we access pages that are
swapped out are provided in Section 4.3. Heap extractor
can access the page memory both page by page and byte
by byte. This facility has been provided to facilitate various
algorithms that might perform better with either of these
memory access methods. Our implementation uses the page
by page access method to extract one page at a time from
the heap and send it to the Heap Analysis Module (discussed
in Section 4.4).

Algorithm 2 Simple NOP Sled Detection

NOPZ <« HASH-TABLE of NOPs/NOP-replacements
EBHHER 5%Uemory buffer from Heap size = SIZE
SKIP <« 1
ndex := 0
nops :=
skipped :=
while 1ndcx < SIZ
if NOPZ|[ BUFFER[lI\dex++] ] then
nops++
else if skipped < SKIP then
skipped++

se
nopb =0

else

s _ LIMIT then

QOP sled detected
endWhile

4.3 Swapped Heap Page Extractor

When the Atomizer needs to access a swapped out page, it
follows a procedure similar to that of the guest OS. We de-
scribe this method as a two-step process where in the first
step, the Atomizer retrieves the page file number and the
page offset and in the second step, it uses this information
to obtain the value of the virtual address from the page file.
Our prototype is based on Windows XP (SP2), with Phys-
ical Address Extension (PAE) support enabled, for imple-
mentation. The PAE gives us four levels of virtual address
translation where a (32-bit) virtual address (in PAE) con-
tains the pointers to the page directory pointer table, page
directory table, page table and page byte offset. Unlike the
page directory pointer table, the page directory and page
table both have 64 bit entries. PAE supports two page sizes
i.e. 4K and 2M (also referred as large page). Depending on
the page size (4K and 2M), the page file number and page
offset are recorded into the page table or the page directory
respectively. If the 7th bit of page directory entry is valid, it
means that the entry is pointing to a large 2M page instead
of a page table. In order to ensure that an entry in the page
directory or page table contains the offset of a page in page
file, its Oth (valid bit), 10th (prototype bit) and 11th (tran-
sition bit) bits must be zero. Moreover, the offset is present
in the higher 32 bits (from 32 to 51 bits) of the 64-bit entry
and the page number is present in the lower 32-bit of the
entry. In the second step, Atomizer uses the libguestfs [7]
library to access the page file of the guest VMs from Dom0
and reads the corresponding page using the page offset infor-
mation. Atomizer then uses the page byte offset present in
the virtual address to access the value of the virtual address.

4.4 Heap Analysis Module

The heap memory received from the heap extractor can
be analyzed in the Heap Analysis Module. Various algo-
rithms may be used here to determine whether the heap
of the process contains malicious contents or not. Some
techniques like STRIDE [10] and ECL-Polynop [16] use se-
quential analysis of network packets to detect NOP sleds in
network traffic, rather than in the process heap itself. Using



the same model in our implementation, we implemented a
simple Polymorphic NOP detection algorithm to detect the
presence of NOP sleds in the heap using sequential analysis
of the heap data. This implementation uses the Atomizer
architecture to sequentially go through the heap memory
and compares each byte of data with a hash table of NOPs
and NOP replacements. The algorithm keeps tracks of se-
quences of NOPs/NOP replacements found and if the length
of these sequences are beyond a certain limit it raises a flag.
The sequence limit used in our experiments was 150 NOPs.
This limit was selected because it gave no false positives in
our experiments. This simple NOP sled detection algorithm
is depicted in the Algorithm 2. This module demonstrates
that our architecture provides a simple way of implement-
ing these kinds of algorithms in the heap analysis module
to detect NOP sleds. The presence of NOP sleds typically
means that malicious content is present in the heap.

5. EVALUATION
5.1 Experimental Settings

For this experiment, we built a simple cloud environment.
This test bed featured a Quad Core i7 (2.67 GHz * 8) server
with HyperThreading enabled and 18 GB of RAM. This
server had a 64-bit privileged virtual machine (Dom0) run-
ning Fedora 16 (kernel 3.3.2-6) along with Xen 4.1.2 [9]. We
instantiated five VM clones (DomU: Dom1-Dom5) in Xen from
a single 32 bit Window XP (SP2) installation to make sure
that all VMs are identical. We used the introspection li-
brary for VMI (libvmi-0.6) [8] and libguestfs [7] in all the
experiments.

5.2 Malware Detection

To test the effectiveness of Atomizer we tested it against
various types of heap sprays commonly found on the web,
as well as some custom made heap spray programs.

The first set of experiments involved the Skypher heap spray
generator [5], an example of a simple heap spraying tech-
nique. Different variants of Skypher were tested on both
Internet Explorer and Mozilla Firefox. Atomizer effectively
detected the heap spray with no false positives. Atomizer
was also tested against another known heap spray attack,
Aurora [4]. This types of heap spray demonstrated some
simple obfuscation techniques to hide the payload. The pay-
load in Aurora was encrypted using the JavaScript libraries
and decrypted at run time. The Atomizer detected the heap
spray without any false positives.

To test the effectiveness of Atomizer against polymorphic
NOP sled detection, in the second set of experiments, we cre-
ated a small application in C that sprayed various polymor-
phic NOP sleds along with a dummy shell code in the heap.
Most of the NOP sled obfuscation tools like ADMutate [1]
are designed to evade Intrusion Detection Systems(IDS) by
encrypting the packets which contain the heap spray code
until it is executed. As we are monitoring the heap, the
NOP sled cannot be encrypted in the heap making it the best
place for detecting it. Polymorphic NOP sleds use NOPs and
NOP replacements to simulate the behavior of random data
in the heap. Our implementation uses a hash table of up to
118 known NOP replacements (which includes both one and
two bytes NOP replacements) to detect the NOP sleds. This
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hash table represents the most commonly used NOP replace-
ments used by roots kits like ADMutate [1], which contains
the biggest public list of NOP replacements [16]. NOP sleds
that might include unknown NOP replacements may not be
detected by our implementation but newly discovered NOP
replacements may potentially be added seamlessly to our
hash table. Our implementation successfully detected the
polymorphic NOP sleds without any false positives.

The Atomizer was tested against a state of the art exploit,
Heap Feng Shui [23]. Heap Feng Shui is a deterministic heap
spray that reduces the amount of heap spraying required for
the exploit. Heap Feng Shui uses the HeapLib (a JavaScript
heap manipulation library) to defragment the heap so that it
can align the heap nodes and consequently requires a smaller
size of heap spray to execute the exploit. The Atomizer
was able to detect this exploit which shows its effectiveness
against state of the art exploits.

5.3 Experimental Performance Analysis

An experimental performance analysis of the Atomizer with
respect to CPU resource utilization was done to determine
the effect of heap spray detection on the cloud environment.
The main purpose of these experiments was to determine the
CPU resources used by Atomizer. For performance evalu-
ation purposes in these experiments, the Atomizer was al-
lowed to continue scanning the heap even after the heap
spray block was found. For better performance the detector
should be stopped when the first sign of malicious activity
is raised.



In our experiments, the Atomizer was run on VMs with a
simple workload (like a web browser running a YouTube
video). This workload also represents the application being
monitored by Atomizer during the experiment. The CPU
usage was monitored while the systems ran. This was done
to set a baseline that shows CPU usage in the normal usage
of the VMs. Figure2(a) shows the CPU baseline for the
VMs.

The Atomizer was run as a multi-process application to mon-
itor all the virtual machines running on our server. The cur-
rent multi-process implementation of Atomizer works around
a lack of thread safety in the libVMI library, an issue that
we are currently working to address. The Figure 2(b) shows
the effect of Atomizer on the CPU. The Figure 2 shows the
cumulative CPU usage of all the Virtual CPU’s (VCPU) on
the server (in our case we had eight VCPUs). This shows
the overall effect of all the applications, including Atomizer
and VMs on the CPU usage. Xentop [9] (the tool used by us
to measure the CPU usage) adds up the percentage of all the
VCPUs available to the system. The rise in the CPU usage
is due to the processing needed by the light load running
on the VMs plus the effect of Atomizer. The multi-process
nature of the Atomizer also exerts more load on CPU. This
limitation can be removed by implementing a multi-threaded
version of Atomizer, a project that we have currently under-
way. The average CPU load increased incrementally, that
shows that Atomizer has acceptable performance and is scal-
able.

6. CONCLUSION

In this paper we presented a novel and scalable method to
analyze the heap memory of the processes running inside a
set of VMs, via VM introspection. Atomizer can be easily
extended by implementing new detection methods for any
type of heap-based attacks. Expermental results show that
Atomizer successfully detects various heap spray attacks and
randomly generated polymorphic NOP sled samples with no
false positives. Further work is required to improve the per-
formance of our method, via a multi-threaded implementa-
tion of Atomizer.
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