
A Highly Immersive Approach to Teaching Reverse Engineering 
Golden G. Richard III 

Department of Computer Science 
University of New Orleans 
New Orleans, LA  70148 

Email: golden@cs.uno.edu 
 
 

Abstract 
While short training courses in reverse engineering are 
frequently offered at meetings like Blackhat and 
through training organizations such as SANS, there are 
virtually no reverse engineering courses offered in aca-
demia.  This paper discusses possible reasons for this 
situation, emphasizes the importance of teaching re-
verse engineering (and applied computer security edu-
cation in general), and presents the overall design of a 
semester-long course in reverse engineering malware, 
recently offered by the author at the University of New 
Orleans.  

1 Introduction 
Reverse engineering of software involves detailed 
analysis of the low-level structure and run-time effects 
of a software component. The component under inves-
tigation might be an entire application, a kernel mod-
ule, a software patch, or a single function.  Reverse 
engineering is often applied directly to application bi-
naries (or bytecode, in the case of applications written 
in interpreted languages), in the absence of available 
source code.  Reverse engineering has many uses, in-
cluding facilitating software interoperability, evalua-
tions of the effects of security patches, security audit-
ing (e.g., determining if the effects of an application 
are malicious or unwanted), and enhancing software 
functionality or performance.  It might also be per-
formed out of simple curiosity, to understand how a 
software component works, or to “crack” software to 
defeat copy protection techniques. Reverse engineering 
also plays a critical role in the deep understanding and 
attempted mitigation of malicious software and this 
paper focuses on that role. 

The skills needed for effective reverse engineering are 
diverse and some are not emphasized in current-
generation computing curricula.  Reverse engineering 
requires not only tenacity (a primary skill), but also 
strong assembler language skills, knowledge of operat-
ing systems internals and both low-level and high-level 
APIs, and in many cases, significant knowledge of 
hardware details.  An abstract view of how paging 
works or a brief description of what a translation look-
aside buffer (TLB) does is considered sufficient in 

most operating systems courses, but for reverse engi-
neering, the devil really is in the details. For example, 
to understand an offensive technique like Shadow 
Walker [13], which relies on de-synchronization of the 
data and instruction TLBs in Intel’s split-TLB design 
to hide code and data, it’s not enough to have seen a 
Powerpoint slide depicting the abstract functionality of 
a TLB—that’s a good start, but both more details and 
hands-on experience are needed. Furthermore, assem-
bler language courses, if they exist at all as independ-
ent courses in a modern computing curriculum, tend to 
be much weaker than in the past, often emphasizing the 
use of High Level Assembler (HLA) [4] and develop-
ment of toy applications.  In many curricula, the as-
sembler language course of old has been folded into the 
undergraduate architecture class.  This is understand-
able to some degree because of the limited use of as-
sembler in general-purpose computing, but is a chal-
lenging issue facing someone developing a reverse 
engineering course. 

When the author began development of the reverse 
engineering course described in this paper, he per-
formed a routine search for other reverse engineering 
courses—what are others doing?  What tools are they 
using? How are they managing to address all of the 
necessary skills in a single semester?  The search 
yielded little.  There appeared to be almost no reverse 
engineering courses being taught at all in academia.   
Why?  Student disinterest can’t be the reason—the 
author’s own students were wildly enthusiastic, despite 
dire warnings of severe mental pain, lost sleep, and 
nightmares involving segmentation and instruction 
prefetch caches.  Why are there almost no hardcore 
reverse engineering courses in academia?  One possi-
bility is that there is a perception that necessary skills 
can’t be developed in a single semester.  While only 
additional experience beyond a single course can fully 
develop a student’s reverse engineering skills, an im-
pressive set of skills can certainly be fostered within a 
single semester. Another possibility is the fear (on the 
part of either faculty members or administration) that 
teaching reverse engineering isn’t a good idea.  What 
impact will such a course have on the school’s comput-
ing infrastructure?  Should we be teaching students to 

1 

mailto:golden@cs.uno.edu


“crack” software?  Precautions are necessary, but 
avoiding horror stories isn’t difficult, given a modest 
amount of dedicated computing resources.  A third 
possibility is that a reverse engineering course might 
not fit into curricula that increasingly emphasize “ab-
stract”, hands-off computing.  Finally, developing a 
reverse engineering course, at least for the first time, 
requires a significant amount of effort for the faculty 
member—it’s far easier for faculty members to flip 
Powerpoint slides than to prepare and then grind 
through long assembly listings with their students.  
Whatever the reason, hands-on, applied computing is 
essential if we are to properly develop systems-
oriented computer scientists who are able to solve im-
portant problems in computer security. 

The thesis of this paper is that hardcore reverse engi-
neering can be taught effectively, with a non-fatal de-
gree of effort on the part of a dedicated instructor, and 
with laboratory facilities that are within the reach of 
most departments. Furthermore, the effort is well worth 
it, and trains students not only to “do” reverse engi-
neering, but also to be much better systems people, 
providing them with better grounding in architecture, 
assembler language, operating systems internals, and 
software optimization, all as a result of their hands-on 
experiences.  Studying reverse engineering teaches 
students how to look hard at the details of systems, 
rather than just noting whether systems do or do not 
have some desired effect. 

The remainder of the paper describes the laboratory 
setup, topics covered in the reverse engineering course, 
teaching methods, and a discussion of the particular 
malware samples analyzed by students in a reverse 
engineering course taught by the author. 

2 Course Details 
2.1 What is it, Really? 
The course described in this paper isn’t a traditional 
computer security course, nor even a traditional aca-
demic course, in the “listen to lectures and do a few 
laboratory exercises” sense.  Neither is it a hacking 
course, although the topics covered could be watered 
down sufficiently to fit within the scope of a single 
semester course on hacking or offensive computing.  
Instead, the goal of the course is to teach students, 
within a single semester, the necessary skills to exam-
ine and understand malicious software.   

2.2 Laboratory Setup 
The Department of Computer Science at the University 
of New Orleans has a dedicated laboratory for digital 
forensics research and instruction, which was used for 

teaching the reverse engineering course.  This labora-
tory contains high-end workstations that boot Linux 
and run Windows XP (as well as a variety of other 
guest operating systems) under VMWare. The lab is 
served by a dedicated gigabit network switch that can 
be isolated from the main departmental network and a 
dedicated file server. Linux boots from the drives in-
stalled in the workstations, but all user files, including 
the VMWare images for Windows XP on the work-
station, are stored on the fileserver. The reverse engi-
neering course concentrated primarily on reversing 
Windows binaries, so virtually all analysis was per-
formed under XP running as a guest inside VMWare.  
Students were instructed to turn networking off inside 
VMWare during analysis of malware and to make 
heavy use of snapshots to maintain the integrity of their 
analysis environments.  While “jump of out VM” 
proofs of concept now exist that allow arbitrary code 
execution on the host OS from a guest OS, no software 
of this type was analyzed in the reverse engineering 
course. Furthermore, while the students were taught 
essential anti-VM techniques and various workarounds, 
the majority of the malware that they analyzed did not 
actively use anti-VM measures, to increase the useful-
ness of the VM-based analysis environment. 

The use of VMWare allowed us to push a single user 
environment for reverse engineering, packaged in a 
20GB VMWare image, into each student’s account. 
This environment could then be easily refreshed if con-
taminated during malware analysis. The environment 
for malware analysis contained the following software: 

• The sysinternals tools [15], including procmon, 
regmon, etc. for dynamic analysis.  These tools are 
freely downloadable.   

• Visual C++ Express Edition [7], which is available 
free to students.  Each student activated her own 
copy of Visual C++ inside her private VMWare 
image.  While the university has a site license for 
the standard Visual C++ distribution, the use of 
Express Edition was ideal, because it allowed stu-
dents to migrate the package to their personal ma-
chines for work outside the laboratory. 

• The MASM32 SDK [6], which is freely down-
loadable and contains necessary include files and 
libraries for writing assembler using Windows op-
erating systems.  

• OllyDbg [9], a very popular Windows debugger, 
which is freely downloadable.  

• IDA Pro [5], a disassembler with extensive support 
for plugins, for static analysis.  This was the only 
essential commercial product. For most of the 

2 



analyses performed in an introductory reverse en-
gineering course, even the freeware 4.x version is 
sufficient, if resources don’t permit purchase of 
sufficient 5.x licenses.  The most important plugin 
for IDA Pro in the context of the course was 
x86emu [16], which provides limited x86 emula-
tion capabilities within IDA Pro (useful, e.g., for 
simple unpacking operations before a static analy-
sis is performed). 

• HBGary’s Responder [3], useful for dynamic 
analysis of malware.  This product is relatively ex-
pensive, but HBGary was kind enough to offer li-
censes for use by students in the UNO laboratory. 

• A number of research-grade tools for live forensics 
analysis [2][10][12], to emphasize the important 
connections between traditional digital forensics 
analysis and malware analysis / incident response. 

2.3 Topics Covered 
The course covered a number of topics in detail.  The 
approach used to manage the introduction and mastery 
of these topics in a single semester is covered in Sec-
tion 2.4.  

 The list of topics included: 

• Goals of reverse engineering, static and dynamic 
analysis, limits of each type of analysis. 

• Ethics and legal issues, including the DMCA and 
the impact of EULAs on reverse engineering ef-
forts.  While the analysis of malware rather than 
commercial software alleviates most legal issues, 
the need to seek legal counsel before pursuing 
most reverse engineering projects was stressed 
heavily.  

• Description of available tools for reverse en-
gineering, including disassemblers, debuggers, live 
forensics tools, etc. 

• Types of malware, typical propagation and pay-
load delivery strategies, poly- and metamorphic 
malware. 

• Basic Intel assembler, including information about 
registers, flags, common instructions, instruction 
and data formats, differences between 32-bit and 
64-bit code, interaction with important hardware 
components, including the paging and debugging 
architectures. 

• Basic DOS and Windows internals and the most 
important APIs for malware analysis.  Because of 
the breadth of this topic, much of this had to be 
learned “on the job” by students, during their 
malware analysis assignments. 

• Windows Portable Executable (PE) format.  Deep 
understanding of executable file formats is crucial 
for analyzing modern malware, since malware of-
ten parses and modifies executable files to hide 
and to propagate.  PE format was stressed in the 
course because the emphasis was on malware that 
impacts Microsoft Windows. 

• Typical control structure, function, array, and C 
struct/union patterns used by commonly encoun-
tered compilers when compiling C into assembler. 

• Common malware functionality, including delta 
offset calculation, discovery of entry points for 
needed APIs, infection and propagation, etc. 

• A catalog of anti-disassembly, anti-VM and anti-
debugger techniques, including the use of self-
modifying code, dynamic jumps, instruction pre-
fetch attacks, local and global descriptor table lo-
cation analysis, and Windows APIs for debugger 
detection. 

• Packing and unpacking techniques, internals of 
popular packers such as UPX [14] and Armadillo 
[1].   Small, simple programs were packed and un-
packed to illustrate the necessary steps, before 
malware was considered. 

2.4 Approach  
Teaching reverse engineering to students who possess a 
basic systems background, but who largely lack ade-
quate assembler or OS internals skills, is a challenging 
task, given a typical 15 week semester. The solution for 
rapidly developing necessary skills is to teach the ba-
sics of reverse engineering while continuously immers-
ing students in malware analysis, from the very first 
lecture.  By starting with analyses of malware samples 
that don’t require extensive knowledge of, e.g., Win-
dows APIs, and interleaving analysis with traditional 
lectures on topics relevant to near-future assignments, 
it is possible for students to develop impressive skills 
within a single semester. 

A variety of teaching strategies and assignment types 
were used to cover the necessary material while devel-
oping the reverse engineering skills of the students.  
These included:  

• Team-oriented analysis of malware samples.  All 
assignments were performed in teams, with active 
team participation checked via traditional exami-
nations (see below).  The typical size of a team 
was 2, with teams of 3 students occasionally ap-
proved by the instructor. 

3 



Refer to the following partial disassembly of the Harulf virus.  Neatly insert comments for each line that 
clearly explain what the instructions / directives accomplish.   
     
Start: 

jmp stuck 
sig_1 dd 0    
sig_2 dd 0    

stuck: 
call here                  
jmp getdelta 

here: 
assume fs:nothing 
mov eax,[esp] 
push eax 
push fs:[0] 
mov fs:[0],esp 
xor eax,eax 
mov eax,[eax] 
ret            

getdelta: 
...        
pop fs:[0] 
pop edx 
pop ebp 
sub ebp,offset here 
add ebp,2h 
cmp ebp,0 
je skipdecrypt 

 
Figure 1.  A sample midterm examination question that tested student participation in team-oriented 
reverse engineering exercises. 

• Traditional lectures, with Powerpoint slides, to 
introduce important background material, as de-
scribed in Section 2.3.  

• Source code walkthroughs, with a document cam-
era connected to an LCD projector, for a number 
of malware samples, including every sample ana-
lyzed by the student teams. For these walk-
throughs, fully-documented assembler was used 
(documentation provided by the instructor) and 
further marked up during class discussion.  The 
marked up copies were then scanned and distrib-
uted electronically to students.  These pencil and 
paper sessions with a document camera were es-
sential to the success of the course, for several rea-
sons.  First, the document camera allows large por-
tions of the malware sample to be viewed at once, 
which is simply not possible with Powerpoint. The 
in-class markup also brings persistent context to 
the discussion and provides a reasonable pace for 
the presentation. 

• Traditional midterm and final examinations, with 
the bulk of questions directly related to the mal-
ware analyses conducted by the teams.  For exam-

ple, a typical question might target a tricky section 
of the disassembly of a familiar malware sample.  
If the student actively worked on the analysis, then 
the question should be answerable within the al-
lowed time. The question will pose significant dif-
ficulty if the student didn’t participate in the mal-
ware analysis. Figure 1 provides an example, 
based on team-based analysis of the Windows Ha-
rulf virus.  Answering the question correctly re-
quires analyzing Harulf’s delta offset calculation 
as well as one of its anti-debugging strategies (in-
volving structured exception handling combined 
with a null pointer reference to trip up debuggers).  
Questions like this are sufficiently difficult that 
reasonable reverse engineering skills are required 
to answer them in case the student didn’t actually 
work on the analysis with her team.  If the student 
can answer questions of this kind without partici-
pating in the analyses, then in the author’s opinion, 
the student still meets the course’s goals. 

• Short, in-class, laboratory sessions. In addition to 
out-of-class team assignments, a number of in-
class laboratory sessions were conducted, to allow 
the instructor to directly assist students with new 

4 



analysis techniques, such as unpacking executa-
bles.  These sessions were graded as pass/fail, with 
attendance and completion of an assigned task re-
sulting in a pass. 

The next section discusses representative malware 
samples analyzed in class and used for team assign-
ments.  Presentation of important topics using tradi-
tional lecture mechanisms was interleaved with in-class 
analysis of these malware samples (and others) to mo-
tivate students to study necessary background material.  
For example, the Michelangelo virus was analyzed 
during the first week of class, along with handouts de-
scribing essential DOS internals necessary to fully un-
derstand the actions taken by the virus. 

2.5 A Malware Sampler 
This section discusses some of the primary malware 
samples used in the reverse engineering class, in order 
of presentation, with a brief justification for each.  
There is nothing magical about these selections other 
than the fact that the sequence of malware samples 
meets two main requirements.  First, the sequence 
should progressively introduce new and important fea-
tures that a reverse engineer might encounter when 
analyzing modern malware.  Second, malware samples 
in the sequence should pose a reasonable increase in 
difficulty, sufficient to repeatedly challenge student 
teams nearly to the limits of their current ability (within 
available time).   

Michelangelo 
Michelangelo is a DOS boot sector virus that is trans-
mitted by infecting the boot sector of floppies and the 
MBR of hard drives.  It stays resident to infect addi-
tional floppies by replacing the interrupt handler for 
floppy I/O under MS-DOS.  On Michelangelo’s birth-
day, the virus maliciously overwrites sectors on at-
tached hard drives.  Michelangelo is a good choice for 
a gentle introduction to reverse engineering because it 
yields easily to static analysis.  It introduces students to 
boot sector and master boot record (MBR) layouts, 
simple destructive payloads, and provides a good in-
troduction to many DOS system calls, all of which are 
executed in a straightforward manner. It is interesting 
enough to hold the attention of students and difficult 
enough to motivate students to study necessary back-
ground materials and work on improving their assem-
bler skills. 

DOS-7 
The DOS-7 virus infects .COM files, including a spe-
cific version of COMMAND.COM.  The virus em-
ploys a number of mechanisms to conceal its intent and 
prevent analysis. One example is obfuscating systems 

calls for file I/O by remapping the int 21h interrupt 
handler.  Another is employing self-modifying code to 
hide the values of arguments to system calls, which 
requires hand disassembly to unravel.  The virus also 
employs a simple but deadly (at least on older Intel 
processors) anti-debugger trick.  When analyzed inside 
a debugger on older Intel hardware, differences in in-
struction prefect cache execution under DEBUG.EXE 
are exploited to partially erase attached hard drives.   

SQL Slammer 
SQL Slammer is a UDP-based, single packet worm that 
attacks Microsoft SQL Server installations. The rapid 
propagation of SQL Slammer caused extensive damage 
in 2003 [8], even though the worm carries no malicious 
payload.  SQL Slammer was used as the first Win32 
malware sample because it is reasonably easy to under-
stand, employing only limited obfuscation and reliance 
on a small set of Windows APIs. 

Lucius 
Lucius is a Windows virus that recursively visits direc-
tories to infect .EXE files and infects employs a single 
level of XOR-based encryption, introducing students to 
simple packing strategies.  Lucius has no malicious 
payload, uses kernel32.dll detection that works under 
both Win9x and WinNT+, and patches CALL state-
ments in infected EXEs to divert execution to the virus’ 
code. 

Harulf 
Harulf is a flawed Windows virus that contains bugs 
that impact its ability to deliver its multiple payloads, 
but is still interesting enough to assign for analysis, for 
a number of reasons.  It employs simple polymor-
phism, two layers of encryption, as well as a number of 
anti-debugging strategies, including the use of a struc-
tured exception handler within the delta offset calcula-
tion and detection of anomalous execution of CPUID 
instructions.  Much of Harulf is copied from other vi-
ruses (including its code for detection of the location of 
kernel32.dll, critical for access to other needed APIs), 
which allows students to use online resources to crack 
some of its secrets. 

Conficker 
The class did not analyze a Conficker sample, though a 
sample was available.  Instead, the class reviewed the 
SRI analysis of Conficker C [11] as a group, during the 
last week of the semester.  Conficker employs multiple 
defenses against analysis and has novel, secure dy-
namic update mechanisms. The use of the Conficker 
analysis to “shut down” the semester provided students 
with a chance to understand the serious difficulties in 

5 



6 

analyzing state-of-the-art malware and to reflect upon 
their current skill levels. 

3 Discussion 
The reverse engineering class discussed in this paper 
was taught in Spring 2009 to 25 students, approxi-
mately 2/3 of whom were graduate students, with the 
remainder being undergraduates. The students entered 
the class with a wide variety of backgrounds and tech-
nical competencies.  All of the students had taken an 
introductory course in computer security, which dis-
cussed malicious software at a high-level, but did not 
expose them to serious reverse engineering efforts. 
Approximately 20% of the students had previously 
taken an operating systems internals course (concen-
trating on Linux and also taught by the author).  Ap-
proximately 50% of the students had taken or were 
simultaneously enrolled in one of the courses in our 
digital forensics curriculum.  Perhaps most important, 
virtually none of the students had taken a serious as-
sembler language course or had expert-level assembler 
skills. 

Without a doubt, the students that enroll in a reverse 
engineering course tend to be “hacker” types, inter-
ested in highly applied and experimental computing.  
Still, there were non-isolated cases of trepidation (some 
severe) among the students when they discovered that 
the course would be both very immersive and in most 
cases, seriously tax their limited assembler language 
skills.  Only one student dropped this course in Spring 
2009 and while several students remarked that it was 
the hardest course they had ever taken, none failed.  
The skill levels of students upon completion varied 
considerably, from average to extremely competent.    
Several students enquired seriously about a “Reverse 
Engineering II” course—no such course is planned and 
in the author’s opinion isn’t necessary. 

4 Conclusions 
This paper discusses a reverse engineering course re-
cently developed by the author and taught at the Uni-
versity of New Orleans. The course uses a highly im-
mersive approach, continuously exposing students to 
increasingly more difficult malware analysis, both in 
class and with team assignments, while interleaving 
traditional lectures on topics such as advanced assem-
bler, Windows APIs, and packing.  A crucial pedagogi-
cal element of the course is the use of detailed, in-class 
walkthroughs of malware source code using a docu-
ment camera.  The source code is thoroughly marked 
up based on class discussion and scanned copies of the 
commented and marked up source code are then dis-
tributed to students electronically.  Student response to 

the course was overwhelmingly positive. In the au-
thor’s opinion, as well as that of many of his col-
leagues, courses such as the one described, which con-
centrate on applied, hands-on security analysis, are 
absolutely necessary if academia is to increase produc-
tion of students capable of solving real-world security 
problems. 

Acknowledgements  
The author would like to thank Andrew Case and Lo-
dovico Marziale, who contributed to the development 
of the course. Thanks to Vitaly Shmatikov, Somesh 
Jha, and Eugene Spafford for discussions about the 
state of reverse engineering in academia. Finally, 
thanks to the anonymous referees for comments that 
improved the final version of the paper. 

References 
[1] Armadillo packer, http://www.siliconrealms.com. 
[2] A. Case, A. Cristina, L. Marziale, G. G. Richard III, 
V. Roussev, "FACE: Automated Digital Evidence Dis-
covery and Correlation," Proceedings of the 8th Annual 
Digital Forensics Research Workshop (DFRWS 2008), 
Baltimore, MD, 2008. 
[3] HBGary Responder, http://www.hbgary.com/. 
[4] R. Hyde, “High Level Assembler Language”, 
http://webster .cs.ucr.edu/AsmTools/HLA/index.html. 
[5] IDA Pro, http://www.hex-rays.com/idapro/. 
[6] MASM32 SDK, http://www.masm32.com/. 
[7] Microsoft Visual C++ Express Edition, http:// 
www.microsoft.com/Express/vc/. 
[8] D. Moore, V. Paxson, S. Savage, C.  Shannon, S. 
Staniford, N. Weaver, “Inside the Slammer Worm,” 
IEEE Security and Privacy, 1(4):33-39, July 2003. 
[9] OllyDbg, http://www.ollydbg.de/. 
[10]  N. Petroni, A. Walters, T. Fraser, and W. Ar-
baugh, "FATKit: A Framework for the Extraction and 
Analysis of Digital Forensic Data from Volatile System 
Memory," Digital Investigation, 3(4):197-210, Decem-
ber, 2006. 
[11] P. Porras, H. Saidi, V. Yegneswaran, “Conficker 
C  Analysis”, http://mtc.sri.com/Conficker/. 
[12] A. Schuster, “Searching for Processes and Threads 
in Microsoft Windows Memory Dumps”, Proceedings 
of the 2006 Digital Forensic Research Workshop 
(DFRWS), 2006. 
[13] S. Sparks, J. Butler, “Raising the Bar for Windows 
Rootkit Detection,” Phrack Issue # 63. 
[14] “UPX: The Ultimate Packer for eXecutables,” 
http://upx.sourceforge.net/. 
[15] Windows sysinternals suite, http://technet 
.microsoft.com/en-s/sysinternals/default.aspx. 
[16] ida-x86emu plugin for IDA Pro, http://ida-
x86emu.sourceforge.net/ 

http://www.hbgary.com/
http://webster/
http://www.hex-rays.com/idapro/
http://www.masm32.com/
http://www.ollydbg.de/

	Abstract
	1 Introduction
	2 Course Details
	2.1 What is it, Really?
	2.2 Laboratory Setup
	2.3 Topics Covered
	2.4 Approach 
	2.5 A Malware Sampler

	3 Discussion
	4 Conclusions

