
CCT: Center for Computation & Technology

Hybrid OpenMP/MPI
with Cactus and Carpet

Erik Schnetter
CIGR Talk Series

Baton Rouge, LA, 2009-10-19

Monday, October 19, 2009

CCT: Center for Computation & Technology

OpenMP Parallelisation:
Quick Facts

• OpenMP can parallelise within one node only
(requires shared memory)

• Saves memory (no ghost zones required); reduces
cache pollution

• Can improve scaling (since fewer MPI processes
for same number of cores)

• OpenMP directives are ignored by default (are safe
to add to existing code)

• OpenMP is supported almost everywhere

Monday, October 19, 2009

CCT: Center for Computation & Technology

Background:
MPI Parallelisation
Cactus Structure Parallelism

Domain decomposition

The Cactus team Introduction to the Cactus Framework Jun 22 2009

• Decompose domain, one subdomain for each process

• Introduces ghost zones, creating memory overhead

• Requires synchronising after modifying grid functions

Monday, October 19, 2009

CCT: Center for Computation & Technology

OpenMP Parallelisation

• Threads share same memory, work on same arrays

• No ghost zones, no memory overhead

• No synchronisation required

• Usually, only loops are parallelised, remainder of
programme remains sequential

0

1

2

3

0 1

2 3

or

Monday, October 19, 2009

CCT: Center for Computation & Technology

Sample Calculation: Ghost
Zone Memory Overhead

• Assume 20³ grid points per process,
3 ghost zones (4th order with advection)

• evolved points: 20³ = 8,000

• overall points: (20+2⋅3)³ = 17,576

• ghost zone overhead: 120% (factor 2.2)

• (Lesson: “3” is a large number if it is found
in an exponent...)

Monday, October 19, 2009

CCT: Center for Computation & Technology

Current State

• Most of Cactus, PUGH, Carpet parallelised via
OpenMP (but not everything fully optimised yet)

• Note: Can parallelise incrementally by looking
at timer output, working on slowest routines

• New codes (CTGamma, McLachlan, etc.) fully
parallelised

• Hand-written Fortran codes (CCATIE, Whisky)
not yet parallel (tedious!)

• “Serial thorns” in Einstein Toolkit (TwoPunctures,
AHFinderDirect) partly parallelised

Monday, October 19, 2009

CCT: Center for Computation & Technology

Benchmark (Scaling)

 0
 5

 10
 15
 20
 25
 30
 35
 40

 16 64 256 1k 4k 16k

tim
e

pe
r R

H
S

ev
al

ua
tio

n
[µ

s]

number of cores

Cactus Benchmark

Franklin
SGI Altix

Queen Bee
Ranger

• Setup:
Carpet, McLachlan,
9 AMR levels

• 25³ per core,
3 ghost zones,
weak scaling

• infrastructure scales
well (except regridding)

• uses OpenMP to
improve scalability

Monday, October 19, 2009

CCT: Center for Computation & Technology

Improved Scaling
via OpenMP

• Note: these are outdated weak
scaling results, demonstrating
how scaling breaks down

• different #OpenMP threads:
 Franklin: 1
 Queen Bee: 8
 Ranger: 4

• scaling breakdown depends on
#MPI processes, not on #cores

• Using N threads improve
scaling by a factor of N

 0

 50

 100

 150

 200

 1 10 100 1000 10000

tim
e

pe
r g

rid
 p

oi
nt

 [µ
s]

cores

McLachlan/Carpet AMR Scaling

Franklin
Queen Bee

Ranger

[Outdated results, March 2008]

Monday, October 19, 2009

CCT: Center for Computation & Technology

Benchmark (Single Node)

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16

tim
e

pe
r R

H
S

ev
al

ua
tio

n
[µ

s]

number of cores used

Cactus Benchmark (using 1 node)

Ranger (varying NT)

• Varying #cores used,
#MPI processes,
#OpenMP threads

• ideal scaling would be
horizontal line

• using more cores
reduces per-core
performance

• using OpenMP changes
performance

Monday, October 19, 2009

CCT: Center for Computation & Technology

Benchmark (shared memory
vs. interconnect)

 0

 5

 10

 15

 20

 25

 30

 1 2 4 8 16

tim
e

pe
r R

H
S

ev
al

ua
tio

n
[µ

s]

number of allocated nodes

Cactus Benchmark (using 16 cores)

Ranger (varying NT)

• Varying #nodes used,
#MPI processes,
#OpenMP threads

• ideal scaling would be
horizontal line

• using more nodes does
not influence
performance much

• using OpenMP changes
performance

Monday, October 19, 2009

CCT: Center for Computation & Technology

Future Benchmark Work

• Previous slides examine only wall time

• Need more low-level information:

• cycles, instructions, cache misses, memory
bandwidth thread/MPI wait times, etc.

• compare different architectures, compilers, build
options (>30% unexplained difference between
different systems)

• Given allocation shortages, 30% difference is huge

Monday, October 19, 2009

CCT: Center for Computation & Technology

OpenMP Support in Tools

• Kranc: automated code generation
<http://numrel.aei.mpg.de/Research/Kranc/>

• Kranc generated code is fully parallelised with
OpenMP

• SimFactory: simulation management
<http://www.cct.lsu.edu/~eschnett/SimFactory/>

• Cactus configurations built by SimFactory use
OpenMP compiler options by default

• Simulations started via SimFactory can use OpenMP
easily (--num-threads=N)

Monday, October 19, 2009

http://numrel.aei.mpg.de/Research/Kranc/
http://numrel.aei.mpg.de/Research/Kranc/
http://hearne.phys.lsu.edu/
http://hearne.phys.lsu.edu/

CCT: Center for Computation & Technology

LoopControl

• Generic mechanism to loop over grid functions,
can replace nested for/do loops

• automatically tiles loops (can improve cache
efficiency)

• automatically parallelises via OpenMP

• LoopControl keeps performance statistics, and
can optimise its tiling/parallelisation parameters
at run time

Monday, October 19, 2009

CCT: Center for Computation & Technology

LoopControl Example

#pragma omp parallel for
for (int k=1; k<cctk_lsh[2]-1; k++) {
 for (int j=1; j<cctk_lsh[1]-1; j++) {
 for (int i=1; i<cctk_lsh[0]-1; i++) {

#include <loopcontrol.h>
#pragma omp parallel
LC_LOOP3 (wavetoy, i,j,k,
 1,1,1,
 cctk_lsh[0]-1,cctk_lsh[1]-1,cctk_lsh[2]-1,
 cctk_lsh[0],cctk_lsh[1],cctk_lsh[2])
{

• LC_LOOP3 macro
hides complexity

• Perform loop
optimisations (tiling,
different OpenMP
topologies)

• Could introduce other
optimisations later,
without changing
macro calls

Original:

with LoopControl:

Monday, October 19, 2009

CCT: Center for Computation & Technology

Programming with OpenMP
(Not A Tutorial)

• With OpenMP, typically individual loops are
parallelised, leaving other code unchanged

• Loops have OpenMP directives added, e.g.
 #pragma omp parallel for

• Need to use special compiler flag (e.g. -openmp)
to enable directives (otherwise they are ignored)

• See <http://www.openmp.org/>; many tutorials on
the web

Monday, October 19, 2009

http://www.openmp.org
http://www.openmp.org

CCT: Center for Computation & Technology

OpenMP Concepts

• To be parallelised, the individual iterations of a loop
must be independent:

• the order of execution must not matter

• different iterations must not access the same
variables

• Good examples: RHS evaluation, con2prim

• Not parallel: Gauss-Seidel iteration, performing I/O

Monday, October 19, 2009

CCT: Center for Computation & Technology

OpenMP Fortran Example:
Whisky, con2prim

 !$omp parallel do private (epsnegative, det,
 uxx,uxy,uxz,uyy,uyz,uzz, psi4pt, enthalpy)
 do k = 1, nz
 do j = 1, ny
 do i = 1, nx

!$omp critical
 call CCTK_WARN(1,'Con2Prim: stopping the code.')
!$omp end critical

good: only need to annotate 3D loops
bad: need to list all temporary variables used in the loop
C, C++: can declare variables inside loop (much simpler)

can do I/O in parallel loop if OpenMP is told about it

Monday, October 19, 2009

CCT: Center for Computation & Technology

Private Variables,
Reduction Operations

• If a loop uses temporary variables, they either need
to be declared inside the loop, or need to be
declared as private

• In other words: you need to tell OpenMP about
it, then you’re fine

• Likewise, if a reduction (e.g. sum) is performed,
OpenMP needs to be told

• Some loops just cannot be parallelised; if you do,
you may silently sometimes receive wrong results

Monday, October 19, 2009

