Hybrid OpenMP/MP]
with Cactus and Carpet

Erik Schnetter

CIGR Talk Series
Baton Rouge, LA, 2009-10-19

CCT: Center for Computation & Technology

A

il
gLl
LS

TECHNOLOGY

OpenMP Parallelisation:

u;.\"n-.\li S N AIO Q u i C I(FaCtS

Monday, October 19, 2009

OpenMP can parallelise within one node only
(requires shared memory)

Saves memory (no ghost zones required); reduces
cache pollution

Can improve scaling (since fewer MPI processes
for same number of cores)

OpenMP directives are ignored by default (are safe
to add to existing code)

OpenMP is supported almost everywhere

CCT: Center for Computation & Technology

il Background:

LSU

e oncoo MPI Parallelisation

® Decompose domain, one subdomain for each process
® |Introduces ghost zones, creating memory overhead

® Requires synchronising after modifying grid functions

CCT: Center for Computation & Technology

Monday, October 19, 2009

=T OpenMP Parallelisation

CENTER FOR COMPUTATION
& TECHNOLOGY

® Threads share same memory, work on same arrays
® No ghost zones, no memory overhead

® No synchronisation required

® Usually, only loops are parallelised, remainder of

programme remains sequential

CCT: Center for Computation & Technology

Monday, October 19, 2009

[

il Sample Calculation: Ghost
Zone Memory Overhead

LS
CENTER FOR COMPLU"

® Assume 20° grid points per process,
3 ghost zones (4th order with advection)

® evolved points: 20° = 8,000
® overall points: (20+2-3)° = 17,576
® sghost zone overhead: 120% (factor 2.2)

® (Lesson:3” is a large number if it is found
in an exponent...)

CCT: Center for Computation & Technology

Monday, October 19, 2009

i
Lsu Current State

CENTER FOR COMPUTATION
& TECHNOLOGY

® Most of Cactus, PUGH, Carpet parallelised via
OpenMP (but not everything fully optimised yet) |

® Note: Can parallelise incrementally by looking
at timer output, working on slowest routines

® New codes (CTGamma, MclLachlan, etc.) fully
parallelised

® Hand-written Fortran codes (CCATIE, Whisky)
not yet parallel (tedious!)

® “Serial thorns” in Einstein Toolkit (TwoPunctures,
AHFinderDirect) partly parallelised

CCT: Center for Computation & Technology

Monday, October 19, 2009

il

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY

Benchmark (Scaling)

Cactus Benchmark
Setup:

[7%)
=
C
9
e
]
=
®
>
O
)
L
oC
| -
O
O
D
£
el

Carpet, Mclachlan,
9 AMR levels

25° per core,
3 ghost zones,
weak scaling

Franklin

SGI Altix ---»---
Queen Bee ---%--- infrastructure scales

well (except regridding)

64

Monday, October 19, 2009

256 1k 4Kk

uses OpenMP to
number of cores

improve scalability

CCT: Center for Computation & Technology

il Improved Scaling

LSU

CENTER FOR COMPUTATION
& TECHNOLOGY VI a P e n

Note: these are outdated weak
scallng results, demonstrating
McLachlan/Carpet AMR Scaling how scaling breaks down

L | L L
Franklin —+— : ,
Queen Bee different #0OpenMP threads:
] Franklin: I
Queen Bee: 8

Ranger: 4

%)
=
fd
=
o
o
O
S
O
S
o
o
)
£
-

scaling breakdown depends on
#MPI| processes, not on #cores

100 1000 10000
cores

[Outdated results, March 2008] Us".‘g N threads improve
scaling by a factor of N

CCT: Center for Computation & Technology

Monday, October 19, 2009

W

P AR

=T Benchmark (Single Node)

CENTER FOR COMPUTATION
& TECHNOLOGY

Cactus Benchmark (using 1 node) Varying #cores used,
#MPI processes,

#OpenMP threads

ideal scaling would be
horizontal line

using more cores
reduces per-core
performance

F\:anger (\I/arying I\IIT)

‘0
=
C
Q
e
®
=
©
>
O
)
L
o
| -
O
O
O
=
e

2 4 g Y using OpenMP changes

erformance
number of cores used P

CCT: Center for Computation & Technology

Monday, October 19, 2009

~ Benchmark (shared memory
LSU
R VS. interconne ct)

Cactus Benchmark (using 16 cores) Varying #nodes used,
#MPI processes,

#OpenMP threads

ideal scaling would be
horizontal line

using more nodes does
not influence
performance much

Fllanger (Yarying I\IIT) -

2 4 g | 16 using OpenMP changes
performance

‘0
=
C
Q
e
®
=
©
>
O
)
L
o
| -
O
O
O
=
e

number of allocated nodes

CCT: Center for Computation & Technology

Monday, October 19, 2009

i

Lsu Future Benchmark VWork

CENTER FOR COMPUTATION
& TECHNOLOGY

® Previous slides examine only wall time
® Need more low-level information:

® cycles, instructions, cache misses, memory
bandwidth thread/MPI wait times, etc.

® compare different architectures, compilers, build
options (>30% unexplained difference between
different systems)

® Given allocation shortages, 30% difference is huge

CCT: Center for Computation & Technology

Monday, October 19, 2009

i

P IR

L5 OpenMP Support in Tools

CENTER FOR COMPUTATION
& TECHNOLOGY

® Kranc:automated code generation
<http://numrel.aei.mpg.de/Research/Kranc/>

® Kranc generated code is fully parallelised with
OpenMP

® SimFactory: simulation management
<http://www.cct.Isu.edu/~eschnett/SimFactory/>

® (Cactus configurations built by SimFactory use
OpenMP compiler options by default

® Simulations started via SimFactory can use OpenMP
easily (--num-threads=N)

CCT: Center for Computation & Technology

Monday, October 19, 2009

http://numrel.aei.mpg.de/Research/Kranc/
http://numrel.aei.mpg.de/Research/Kranc/
http://hearne.phys.lsu.edu/
http://hearne.phys.lsu.edu/

Lsu LoopControl

CENTER FOR COMPUTATION
& TECHNOLOGY

® Generic mechanism to loop over grid functions,
can replace nested for/do loops

® automatically tiles loops (can improve cache
efficiency)

automatically parallelises via OpenMP

LoopControl keeps performance statistics, and
can optimise its tiling/parallelisation parameters
at run time

CCT: Center for Computation & Technology

Monday, October 19, 2009

i
L5 LoopControl Example

CENTER FOR COMPUTATION
& TECHNOLOGY

o LC LOOP3 macro
hides complexity

Original:
#pragma omp parallel for
for (int k=1; k<cctk 1sh[2]-1; k++) { R .
for (int j=1; j<cctk 1lsh[1]-1; j++) { optimisations (tiling,
for (int 1i=1; i<cctk 1sh[0]-1; 1i++) { different OpenMP
topologies)

Perform loop

with LoopControl: Could introduce other
optimisations later,

#pragma omp parallel without changing
LC LOOP3 (wavetoy, 1i,7,k, macro calls
1,1,1,
cctk 1sh[0]-1,cctk 1sh[l]-1,cctk 1lsh[2]-1,
cctk 1sh[0],cctk 1sh[1l],cctk 1sh[2])

#include <loopcontrol.h>

CCT: Center for Computation & Technology

Monday, October 19, 2009

Programming with OpenMP

LSU

- (Not A Tutorial)

With OpenMP, typically individual loops are
parallelised, leaving other code unchanged

Loops have OpenMP directives added, e.g.

#pragma omp parallel for

Need to use special compiler flag (e.g. -openmp)
to enable directives (otherwise they are ignored)

See <http://www.openmp.org/>; many tutorials on
the web

CCT: Center for Computation & Technology

Monday, October 19, 2009

http://www.openmp.org
http://www.openmp.org

L5 OpenMP Concepts

CENTER FOR COMPUTATION
& TECHNOLOGY

® To be parallelised, the individual iterations of a loop
must be independent:

® the order of execution must not matter

® different iterations must not access the same
variables

® Good examples: RHS evaluation, con2prim

® Not parallel: Gauss-Seidel iteration, performing I/O

CCT: Center for Computation & Technology

Monday, October 19, 2009

OpenMP Fortran Example:

LSU

S TECHNOLOGY W h i S I(y’ C O n 2 P ri m

!Somp parallel do private (epsnegative, det,
UxxX,UuUxy,uxz,uyy,uyz,uzz, psidpt, enthalpy)
do k 1, nz
do J =1, ny
do = 1, nx
good: only need to annotate 3D loops

bad: need to list all temporary variables used in the loop
C, C++: can declare variables inside loop (much simpler)

!Somp critical
call CCTK WARN(1l, 'Con2Prim: stopping the code.')
!Somp end critical

can do I/O in parallel loop if OpenMP is told about it

CCT: Center for Computation & Technology

Monday, October 19, 2009

J i Private Variables,
LS

T ot Reduction O pec rations

® |f aloop uses temporary variables, they either need
to be declared inside the loop, or need to be

declared as private

® |n other words: you need to tell OpenMP about
it, then you're fine

® |ikewise,if a reduction (e.g. sum) is performed,
OpenMP needs to be told

® Some loops just cannot be parallelised; if you do,
you may silently sometimes receive wrong results

CCT: Center for Computation & Technology

Monday, October 19, 2009

