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Cactus Code

• Freely available, modular, portable environment 

for collaboratively developing parallel, high-

performance multi-dimensional simulations 

(Component-based)

• Applications:• Applications:

– Numerical Relativity (Black holes, GRMHD)

– Petroleum Engineering (Reservoir simulations, EnKF)

– Coastal Modeling (Shallow water, Boussinesq)

– CFD, Quantum Gravity, …

• Finite difference, AMR, FE/FV, multipatch

• Over 10 years of development, funded by NSF, 

DOE, DOD, NASA
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Application Environment
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Cactus Flesh

• Written in ANSI C

• Independent of all thorns

• Contains flexible build system, parameter parsing, 
rule based scheduler, …

• After initialization acts as utility/service library which • After initialization acts as utility/service library which 
thorns call for information or to request some action 
(e.g. parameter steering)

• Contains abstracted APIs for: 
– Parallel operations, IO and checkpointing, reduction 

operations, interpolation operations, timers. (APIs 
designed for science needs)

• Functionality provided by (swappable) thorns



• Written in C, C++, Fortran 77, Fortran 90, (Java, 
Perl, Python)

• Separate swappable libraries encapsulating 
some functionality (“implementations”)

• Each thorn contains configuration files which 
specify interface with Flesh and other thorns

Cactus Thorns (Components)

specify interface with Flesh and other thorns

• Configuration files into a set of routines which 
provide thorn information
– Scheduling, variables, functions, parameters, 

configuration

• Configuration files have well defined language, 
use as basis for framework interoperability 



Relativistic Astrophysics in 2010

• Frontier Astrophysics Problems
– Full 3D GR simulations of binary systems for dozens or 

orbits and merger to final black hole
• All combinations of black holes, neutron stars, and exotic 

objects like boson stars, quark stars, strange stars

– Full 3D GR simulations of core collapse, supernova 
explosions, accretion onto NS, BHexplosions, accretion onto NS, BH

– Gamma-ray bursts

• All likely to be observed by 

LIGO in the timeframe of 

this facility.



• Resolve from 10,000km down to 100m on a domain 
of 1,000,000km-cubed for 100 secs of physical time

• Assume 16,000 flops per gridpoint

• 512 grid functions

• Computationally: 

Computational Needs for GRB

• Computationally: 
– High order (>4th) adaptive finite difference schemes

– 16 levels of refinement

– Several weeks with1 PFLOP/s sustained performance

– (at least 4 PFLOP/s peak, > 100K procs)

– 100 TB memory (size of checkpoint file needed)

– PBytes storage for full analysis of output



Cactus Parallelism

• Scheduler calls routines and provides n-D 

block of data (typical set up for FD codes)

• Also information about size, boundaries, etc.

• Fortran memory layout used (appears to C as 

1D array)1D array)

• Driver thorns are responsible for memory 

management and communication.

– Abstracted from science modules

• Supported parallel operations

– Ghostzone synchronization, generalized 

reduction, generalized interpolation.



PUGH UniGrid Driver

• Standard driver for science runs till a 

few years ago

• MPI domain decomposition

• Flexible methods for load balancing, • Flexible methods for load balancing, 

processor topology

• Well optimized, scales very well for 

numerical relativity kernels (e.g. to 130K 

processors on BG/P)



Carpet AMR Driver

• Mesh refinement library for Cactus, written in 
C++ (Erik Schnetter) 

• Implements (minimal) Berger Oliger
algorithm, constant refinement ratio, vertex 
centered refinement

• MPI to decompose grids across processors, • MPI to decompose grids across processors, 
handle communications

• Now experimenting with
– OpenMP/MPI hybrid models

– Caching/Tiling optimizations



Profiling

• Cactus has its own 

timing interface 

(thorns, timebins, 

communication, user 

defined, …)

• Use PAPI and Tau • Use PAPI and Tau 

through the Cactus 

timing interface

• Runtime application 

level profiling, 

debugging, 

correctness through 

Alpaca Project 

(Schnetter)



Benchmarking Strategy (XiRel)

• Define good benchmarks:

– Weak scaling (kernel, increasing scale of sims)

– Strong scaling (physics, reducing runtime)

– I/O (checkpointing/restart of weak/strong benchmarks)

– Benchmarks for both vacuum and matter spacetimes.– Benchmarks for both vacuum and matter spacetimes.

• For weak scaling we have two cases

– Unigrid (no AMR, similar to old Cactus PUGH)

– AMR (9 levels of refinement)

• Study scaling and performance for four different 

general relativity codes which all use Cactus/Carpet

– Understand differences between codes (#grid variables, 

boundary treatment)



Benchmarking AMR

• AMR adapts resolution to areas needing 

resolving

• Hard to define a typical regridding pattern (in a 

short benchmark)

• Weak scaling uses • Weak scaling uses 

constant grid hierarchy 

(no regridding)

• Strong scaling 

will use regridding



Weak Scaling BH Benchmarks 

• Cartesian Minkowski spacetime as the initial data

• 4th order accurate finite differences

• 4th order accurate Runge-Kutta time integrator

• 3 timelevels for evolved grid functions

• 3 ghostzones for interprocess synchronization

• Reflection symmetries• Reflection symmetries

• 5th order accurate spatial and 2nd order accurate temporal 

interpolation at mesh refinement boundaries

• 5th order Kreiss-Oliger dissipation terms added to RHS

• Dirichlet boundary condition

• No I/O (Cactus/Carpet timer/memory stats at end 

• Grid sizes such that a benchmark run requires approximately 650 

MByte per core, allowing it to run efficiently on systems with 1 GByte

per core, 

• Iterations chosen for 10 minute runs on current hardware. 



Weak Scaling BH Benchmark

291 or 219 GFs 25 or 24 GFs

synced

168K lines of code

+ 50K comments



Strategy

• Single core performance

– Strategies for better cache use

– Understanding performance data

• Node scaling• Node scaling

– Memory bandwidth limitations

– OpenMP/MPI

– Accelerators

• MPI scaling

– Load balancing



Single Core

Measured with Cactus 

timers (PAPI) and 

Perfsuite



Single Core Study (2006)

http://www.cactuscode.org/Articles/Cactus_Madiraju06.pdf/



Timing Methodology for Scaling

• Cactus timers: 

getrusage, gettimeofday

• 3 runs, average across 

procs

• Calculate: Evolution 

time, Physics time, 

Infrastructure (comm, 

regrid, ..) time



Weak Scaling Unigrid



UniGrid: ANL BG/P

• Weak scaling to 131,072 cores (out of 163,840 

available) with PUGH

• Amended vacuum weak scaling benchmark 

(smaller grids)

Center

(Jian Tao)



Weak Scaling AMR (9 levels)



OpenMP

• Much easier to program than MPI

• Different processors can access the 

same memory, only the work is 

distributed – saves parallelisationdistributed – saves parallelisation

ghost zone overhead

• Can add OpenMP directives to serial 

code piece by piece, starting with 

expensive routines

• Directives are ignored by default



Single-Node Scaling

• Full Einstein equations, 

65^3 grid points per 

processor

• Scaling limited by cache 

performanceperformance

• 8th core still increases 

performance (but not 

linearly)

• Need advanced, dynamic 

cache optimisationsParallelisation with OpenMP



Hybrid Weak Scaling 

• Franklin (NERSC): Cray 

XT4, 2 cores/node

[preliminary results; 

using only 1 thread]

• Queen Bee (LONI): Intel,

8 cores/node

[using 8 threads][using 8 threads]

• Ranger (TACC) AMD,

16 cores/node,

NUMA with 4 banks 

[using 4 threads]

Hydrid approach so far ranges from no speed up to 10% speed 

up (Abe/QB) over pure MPI. Benefits are future optimization 

possible, less memory used (no ghostzones), more stable for 

large scale (with developing MPI implementations)

(Schnetter)



LoopControl

• New thorn (library), providing macros to 

iterate over 3D arrays, easy to use

• Uses loop tiling to use the cache efficiently

• Uses OpenMP, if enabled• Uses OpenMP, if enabled

• Uses random-restart hill-climbing algorithm to 

optimise its parameters

automatically at run time

• 10% speed up seen currently, more 

investigations needed, potential for multiple 

times speed up if can better use cache.



Accelerators: GPUs

Speed up of Black Hole code on 

NVIDIA Quadro FX 5600 GPU (CCT-TR-2008-1)

(Burkhard

Zink)



Other Issues

• I/O

– Checkpoint/restart

– HDF5 

– Many files, different formats

• Provenance information (Formaline)

– Automatically collect information on 

machine config, Cactus source code, 

profiling information, etc

29



Final Thoughts
• Cactus/Carpet development challenges

– Dynamic AMR load balancing

– I/O (different strategies for diff machines)

– Regridding still too expensive

– Performance across all thorns

– Hydrid model/Accelerators– Hydrid model/Accelerators

• General challenges
– Need better access to machines (short queues, 

interactive, large procs)

– Main tools rdtsc, printf. gprof too coarse, PAPI, Tau 
hard to install/configure

– Data structures becoming more complex

– Cactus model has many developers, most do not 
produce scalable code. Need application level tools to 
guide them (ALPACA project) 


