
Cactus Framework:

Scaling and Lessons Learnt

Gabrielle Allen, Erik Schnetter, Jian Tao

Center for Computation & TechnologyCenter for Computation & Technology

Departments of Computer Science & Physics

Louisiana State University

Also:

Christian Ott (Caltech/LSU), 

Ian Hinder (PSU), Yosef Zlochower (RIT) XiRel

Alpaca



Cactus Code

• Freely available, modular, portable environment 

for collaboratively developing parallel, high-

performance multi-dimensional simulations 

(Component-based)

• Applications:• Applications:

– Numerical Relativity (Black holes, GRMHD)

– Petroleum Engineering (Reservoir simulations, EnKF)

– Coastal Modeling (Shallow water, Boussinesq)

– CFD, Quantum Gravity, …

• Finite difference, AMR, FE/FV, multipatch

• Over 10 years of development, funded by NSF, 

DOE, DOD, NASA



Cactus Structure

Plug-In “Thorns”
(components)

driverdriver

input/outputinput/output

remote steeringremote steering

parametersparameters

schedulingscheduling

extensibleextensible APIsAPIs

ANSI CANSI C
Fortran/C/C++Fortran/C/C++

Core “Flesh”

input/outputinput/output

interpolationinterpolation

SOR solverSOR solver

coordinatescoordinates

boundaryboundary conditionsconditions

black holesblack holes

equations of stateequations of state

wave evolverswave evolvers

multigridmultigrid
gridgrid variablesvariables

errorerror handlinghandling

schedulingscheduling

makemake systemsystem

Your Physics !!Your Physics !!

ComputationalComputational
Tools !!Tools !!



Application Environment

Cactus Framework

(APIs, Tools)

Domain Specific Toolkits, Applications

Tools:

Viz(APIs, Tools)

AMR Driver 

(Carpet, …)

FE/FV 

Driver

Petascale Hardware, Accelerators

Viz

Debug

Profilers

Data
…New Paradigm



Cactus Flesh

• Written in ANSI C

• Independent of all thorns

• Contains flexible build system, parameter parsing, 
rule based scheduler, …

• After initialization acts as utility/service library which • After initialization acts as utility/service library which 
thorns call for information or to request some action 
(e.g. parameter steering)

• Contains abstracted APIs for: 
– Parallel operations, IO and checkpointing, reduction 

operations, interpolation operations, timers. (APIs 
designed for science needs)

• Functionality provided by (swappable) thorns



• Written in C, C++, Fortran 77, Fortran 90, (Java, 
Perl, Python)

• Separate swappable libraries encapsulating 
some functionality (“implementations”)

• Each thorn contains configuration files which 
specify interface with Flesh and other thorns

Cactus Thorns (Components)

specify interface with Flesh and other thorns

• Configuration files into a set of routines which 
provide thorn information
– Scheduling, variables, functions, parameters, 

configuration

• Configuration files have well defined language, 
use as basis for framework interoperability 



Relativistic Astrophysics in 2010

• Frontier Astrophysics Problems
– Full 3D GR simulations of binary systems for dozens or 

orbits and merger to final black hole
• All combinations of black holes, neutron stars, and exotic 

objects like boson stars, quark stars, strange stars

– Full 3D GR simulations of core collapse, supernova 
explosions, accretion onto NS, BHexplosions, accretion onto NS, BH

– Gamma-ray bursts

• All likely to be observed by 

LIGO in the timeframe of 

this facility.



• Resolve from 10,000km down to 100m on a domain 
of 1,000,000km-cubed for 100 secs of physical time

• Assume 16,000 flops per gridpoint

• 512 grid functions

• Computationally: 

Computational Needs for GRB

• Computationally: 
– High order (>4th) adaptive finite difference schemes

– 16 levels of refinement

– Several weeks with1 PFLOP/s sustained performance

– (at least 4 PFLOP/s peak, > 100K procs)

– 100 TB memory (size of checkpoint file needed)

– PBytes storage for full analysis of output



Cactus Parallelism

• Scheduler calls routines and provides n-D 

block of data (typical set up for FD codes)

• Also information about size, boundaries, etc.

• Fortran memory layout used (appears to C as 

1D array)1D array)

• Driver thorns are responsible for memory 

management and communication.

– Abstracted from science modules

• Supported parallel operations

– Ghostzone synchronization, generalized 

reduction, generalized interpolation.



PUGH UniGrid Driver

• Standard driver for science runs till a 

few years ago

• MPI domain decomposition

• Flexible methods for load balancing, • Flexible methods for load balancing, 

processor topology

• Well optimized, scales very well for 

numerical relativity kernels (e.g. to 130K 

processors on BG/P)



Carpet AMR Driver

• Mesh refinement library for Cactus, written in 
C++ (Erik Schnetter) 

• Implements (minimal) Berger Oliger
algorithm, constant refinement ratio, vertex 
centered refinement

• MPI to decompose grids across processors, • MPI to decompose grids across processors, 
handle communications

• Now experimenting with
– OpenMP/MPI hybrid models

– Caching/Tiling optimizations



Profiling

• Cactus has its own 

timing interface 

(thorns, timebins, 

communication, user 

defined, …)

• Use PAPI and Tau • Use PAPI and Tau 

through the Cactus 

timing interface

• Runtime application 

level profiling, 

debugging, 

correctness through 

Alpaca Project 

(Schnetter)



Benchmarking Strategy (XiRel)

• Define good benchmarks:

– Weak scaling (kernel, increasing scale of sims)

– Strong scaling (physics, reducing runtime)

– I/O (checkpointing/restart of weak/strong benchmarks)

– Benchmarks for both vacuum and matter spacetimes.– Benchmarks for both vacuum and matter spacetimes.

• For weak scaling we have two cases

– Unigrid (no AMR, similar to old Cactus PUGH)

– AMR (9 levels of refinement)

• Study scaling and performance for four different 

general relativity codes which all use Cactus/Carpet

– Understand differences between codes (#grid variables, 

boundary treatment)



Benchmarking AMR

• AMR adapts resolution to areas needing 

resolving

• Hard to define a typical regridding pattern (in a 

short benchmark)

• Weak scaling uses • Weak scaling uses 

constant grid hierarchy 

(no regridding)

• Strong scaling 

will use regridding



Weak Scaling BH Benchmarks 

• Cartesian Minkowski spacetime as the initial data

• 4th order accurate finite differences

• 4th order accurate Runge-Kutta time integrator

• 3 timelevels for evolved grid functions

• 3 ghostzones for interprocess synchronization

• Reflection symmetries• Reflection symmetries

• 5th order accurate spatial and 2nd order accurate temporal 

interpolation at mesh refinement boundaries

• 5th order Kreiss-Oliger dissipation terms added to RHS

• Dirichlet boundary condition

• No I/O (Cactus/Carpet timer/memory stats at end 

• Grid sizes such that a benchmark run requires approximately 650 

MByte per core, allowing it to run efficiently on systems with 1 GByte

per core, 

• Iterations chosen for 10 minute runs on current hardware. 



Weak Scaling BH Benchmark

291 or 219 GFs 25 or 24 GFs

synced

168K lines of code

+ 50K comments



Strategy

• Single core performance

– Strategies for better cache use

– Understanding performance data

• Node scaling• Node scaling

– Memory bandwidth limitations

– OpenMP/MPI

– Accelerators

• MPI scaling

– Load balancing



Single Core

Measured with Cactus 

timers (PAPI) and 

Perfsuite



Single Core Study (2006)

http://www.cactuscode.org/Articles/Cactus_Madiraju06.pdf/



Timing Methodology for Scaling

• Cactus timers: 

getrusage, gettimeofday

• 3 runs, average across 

procs

• Calculate: Evolution 

time, Physics time, 

Infrastructure (comm, 

regrid, ..) time



Weak Scaling Unigrid



UniGrid: ANL BG/P

• Weak scaling to 131,072 cores (out of 163,840 

available) with PUGH

• Amended vacuum weak scaling benchmark 

(smaller grids)

Center

(Jian Tao)



Weak Scaling AMR (9 levels)



OpenMP

• Much easier to program than MPI

• Different processors can access the 

same memory, only the work is 

distributed – saves parallelisationdistributed – saves parallelisation

ghost zone overhead

• Can add OpenMP directives to serial 

code piece by piece, starting with 

expensive routines

• Directives are ignored by default



Single-Node Scaling

• Full Einstein equations, 

65^3 grid points per 

processor

• Scaling limited by cache 

performanceperformance

• 8th core still increases 

performance (but not 

linearly)

• Need advanced, dynamic 

cache optimisationsParallelisation with OpenMP



Hybrid Weak Scaling 

• Franklin (NERSC): Cray 

XT4, 2 cores/node

[preliminary results; 

using only 1 thread]

• Queen Bee (LONI): Intel,

8 cores/node

[using 8 threads][using 8 threads]

• Ranger (TACC) AMD,

16 cores/node,

NUMA with 4 banks 

[using 4 threads]

Hydrid approach so far ranges from no speed up to 10% speed 

up (Abe/QB) over pure MPI. Benefits are future optimization 

possible, less memory used (no ghostzones), more stable for 

large scale (with developing MPI implementations)

(Schnetter)



LoopControl

• New thorn (library), providing macros to 

iterate over 3D arrays, easy to use

• Uses loop tiling to use the cache efficiently

• Uses OpenMP, if enabled• Uses OpenMP, if enabled

• Uses random-restart hill-climbing algorithm to 

optimise its parameters

automatically at run time

• 10% speed up seen currently, more 

investigations needed, potential for multiple 

times speed up if can better use cache.



Accelerators: GPUs

Speed up of Black Hole code on 

NVIDIA Quadro FX 5600 GPU (CCT-TR-2008-1)

(Burkhard

Zink)



Other Issues

• I/O

– Checkpoint/restart

– HDF5 

– Many files, different formats

• Provenance information (Formaline)

– Automatically collect information on 

machine config, Cactus source code, 

profiling information, etc

29



Final Thoughts
• Cactus/Carpet development challenges

– Dynamic AMR load balancing

– I/O (different strategies for diff machines)

– Regridding still too expensive

– Performance across all thorns

– Hydrid model/Accelerators– Hydrid model/Accelerators

• General challenges
– Need better access to machines (short queues, 

interactive, large procs)

– Main tools rdtsc, printf. gprof too coarse, PAPI, Tau 
hard to install/configure

– Data structures becoming more complex

– Cactus model has many developers, most do not 
produce scalable code. Need application level tools to 
guide them (ALPACA project) 


