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ABSTRACT. Although the speed and performance of high end computers have in-
creased dramatically over the last decade, the ease of programming such parallel
computers has not progressed. The time and effort required to develop and debug
scientific software has become the bottleneck in many areas of science and engi-
neering. The difficulty of developing high-performance software is recognised as
one of the most significant challenges today in the effective use of large scale com-
puters.

Cactus is a framework for science applications which is used to simulate phys-
ical systems in many fields of science, such as black holes and neutron stars in
general relativity. As in other software frameworks, applications are built from
separately developed and tested components. Below we outline Alpaca, a concept
and a project to develop high-level tools to allow developers and end-users to ex-
amine and validate the correctness of an application, and aid them in measuring
and improving its performance in production environments. These tools are com-
ponents themselves, built into the application and interacting with it. Alpaca’s
approach includes help to render applications tolerant against partial system fail-
ures, which is becoming a pressing need with tomorrow’s architectures consisting
of tens of thousands of nodes.

In contrast to existing debuggers and profilers, Alpaca’s approach works at a
much higher level, at the level of the physical equations and their discretisations
which are implemented by the application, not at the level of individual lines of
code or variables. It is not enough for only the main kernels to be correct and
show good scalability – the overall application, which may contain many smaller
modules, must perform. We assume that Alpaca’s integrative ansatz will lead to
well-tested and highly efficient applications which are developed in a shorter time
scale and execute more reliably.

1. MOTIVATION

The application of high performance computing to solving increasingly com-
plex problems in science and engineering, such as the nature of a gamma-ray
burst or the function of a complete living organism, is at a critical crossroads in at
least three areas: (i) Hardware: Radically new petascale architectures, built at un-
precedented scales exceeding a million processors, 2-3 orders of magnitude larger
than current large scale systems, are being designed for deployment; (ii) Software:
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Standard approaches to system software, debugging tools, domain decomposi-
tion, message passing, and execution models are outdated, and new approaches
are being developed; (iii) Complex applications: Traditional, simplified, static appli-
cations, developed by single groups are evolving towards highly complex codes
that aim to capture the complexity of nature, including and coupling myriad phys-
ical effects, and utilising adaptive data structures, that require teams of researchers
and computer scientists to develop and use.

These developments create immense and critical problems for the application
scientists and engineers who must develop these codes and use these environ-
ments for their science. There is a growing recognition that the community is fac-
ing a software crisis. It is already increasingly difficult for teams of computational
scientists to develop comprehensive applications that capture the complexity of
the natural systems under study on today’s HPC systems; this problem may be-
come crippling as petascale systems are introduced with potentially very different
architectures, execution models, libraries, etc.

At the heart of this crisis is the dearth of software tools that aid in the devel-
opment of complex, collaborative scientific applications, appropriate for highly
scalable hardware architectures, providing fault tolerance, advanced debugging,
and transparency against new developments in communication, programming,
and execution models. Such tools are especially rare at the application level, where
they are most critically needed.

We propose to address this set of problems through the development of pow-
erful, platform independent, portable extensions to the well known Cactus Com-
putational Toolkit, widely used by dozens of application and computer science
groups around the world, in a diverse set of application areas from astrophysics
to coastal modelling. We focus our attention on several key issues facing scientific
and engineering application developers.

Specifically, below we will address the following issues, at the application level:
(i) fault tolerant capabilities that will be needed for increasingly large scale machines,
where system and hardware faults are likely to be much more common than they
are at present (section 3.6); (ii) performance monitoring capabilities, which will make
it much easier for application developers and users to determine how their more
complex application codes perform on current and future hardware (section 3.4);
(iii) interactive debugging capabilities, critical to locate and cure software or algorith-
mic errors in such complex applications which may be developed by international
collaborations (section 3.3); and (iv) integration with a common user interface, such
as Eclipse, the increasingly popular open source code development environment,
making it much easier to develop code (sections 3.2 and 3.5). In addition, (v) such
tools need to be developed with full involvement from application developers across a
broad range of areas (section 3.1).

The Alpaca project is has received three years’ funding from the NSF SDCI pro-
gramme.

2. CACTUS FRAMEWORK

The Cactus Framework [30, 24] is an open-source, modular, and portable pro-
gramming environment for collaborative HPC computing. It was designed and
written specifically to enable scientists and engineers to develop and perform
the large-scale simulations needed for modern scientific discovery across a broad
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range of disciplines. From the outset, Cactus has followed two fundamental tenets:
driven by user needs and embracing and exploiting new technologies to advance science.
As described below, Cactus is used by a wide and growing range of applications.

Development of Cactus and its associated components (modules) has been driven
from the beginning by user requirements. This has been achieved by developing,
supporting, and listening to a large user base. Among these needs have been ease
of use, portability, support of large and geographically diverse collaborations, and
the ability to handle enormous computing resources, visualisation, file I/O, and
data management. Cactus must also support the inclusion of legacy code, as well
as a range of programming languages. It is essential that any living framework be
able to incorporate new and developing cutting edge computation technologies
and infrastructure (e.g. the Cell processor or GPGPU accelerators [46]), with min-
imal or no disruption to its user base. Some of the key strengths of Cactus have
been its portability and high performance, which led to it being chosen by Intel to
be one of the first scientific applications deployed on the IA64 platform. For ex-
ample, a Cactus application was recently benchmarked on the IBM BG/L system
at IBM T. J. Watson and scaled well up to 32,768 processors [19].

2.1. Application Users. Work started on Cactus in 1997 at the Albert-Einstein-
Institut in Potsdam, Germany, where it was developed with researchers at Wash-
ington University in St. Louis and at the NCSA as the core simulation code for
numerical relativity for an international collaboration. An early version of this
code was involved in the NASA grand challenge neutron-star modelling project
and was delivered to NASA as the GR3D code [1]. Cactus is now used by over
two dozen numerical relativity groups for their cutting edge research. The Cac-
tus numerical relativity kernels have long been used as benchmarks for hardware
architectures [21, 2]. A version has been incorporated into the SPEC CPU2006
benchmarking suite [16].

Although numerical relativity remains the main Cactus user base, the compu-
tational framework is generalised, and Cactus is now increasingly being used for
scientific investigations in a wide range of other application areas including as-
trophysics, quantum gravity, chemical engineering, Lattice Boltzmann Methods,
econometrics, computational fluid dynamics, and coastal and climate modelling
[32, 31, 38, 34, 28, 44, 20, 25]. Consequently, the Alpaca project can draw on the
expertise of developers and users in several of these areas, listed in table 1, and
described in more detail in section 3.1 below.

Cactus is also seen as a prime enabling environment for petascale computing
[42]. Its impressive scaling and portability provide an ideal base to develop petas-
cale applications. The Alpaca project aims at providing debugging, profiling, and
fault-tolerance features which are essential to effective development of such ap-
plications and effective use of petascale machines. The profiling infrastructure in
particular needs to facilitate the development of new parallel driver components
in order to allow the efficient use of multi-core processors and hardware architec-
tures with a hierarchy of bandwidths and latencies.

2.2. Current Cactus Development. As with most frameworks, the Cactus code
base is structured as a central part, called the flesh that provides core routines, and
components, called thorns. The flesh is independent of all thorns and provides
the main programme, which parses the parameters and activates the appropriate
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Application List of Key Computational Require-
ments

Numerical Relativity Large scale simulations. Interest and
involvement in new architectures and
paradigms. Adaptive mesh refine-
ment introduces new performance issues
which are addressed by Alpaca tools.

Computational Fluid Dynamics Multi-block simulations and unstruc-
tured meshes lead to difficulties in load
balancing. Many existing packages need
to be integrated. Using the Cactus CFD
Toolkit as educational HPC tool.

Reservoir Simulations High-throughput simulations. Complex
geometries, elaborate physical models.

Coastal Modelling Simulations require robustness & reli-
ability. Long-term simulations (many
time steps) on massively parallel com-
puters.

Quantum Gravity Young field, requires experimenting with
a wide variety of algorithms, not neces-
sarily PDE based. Performance crucial.

Astrophysics Large scale simulations. Interest and
involvement in new architectures and
paradigms. Efficient solvers for elliptic
equations which are addressed by Al-
paca tools.

TABLE 1. A cross section of current Cactus use across a wide
range of fields. Alpaca can rely on the expertise of Cactus ap-
plication developers and users listed in this table to provide de-
tailed requirements and use cases. This will help test and improve
tool implementations, ensure that software works effectively on a
wide range of architectures, and aid in providing documentation
and support to a wider user community.

thorns, passing control to thorns as required. By itself, the flesh does very little
science; to do any computational task the user must compile in thorns and activate
them at runtime.

A thorn is the basic working component within Cactus. All user-supplied code
goes into thorns, which are, by and large, independent of each other. Thorns com-
municate with each other via calls to the flesh API or, more rarely, custom APIs
of other thorns. The Cactus component model is based upon tightly coupled sub-
routines working successively on the same data, although recent changes have
broadened this to allow some element of spatial workflow. The connection from
a thorn to the flesh or to other thorns is specified in configuration files that are
parsed at compile time and used to generate glue code that encapsulates the exter-
nal appearance of a thorn. At runtime, the executable reads a parameter file that



ALPACA 5

details which thorns are to be active and specifies values for the control parameters
for these thorns.

User thorns are generally stateless entities; they operate only on data which are
passed to them. The data flow is managed by the flesh. This makes for a very
robust model where thorns can be tested and validated independently, and can be
combined at run-time in the manner of a functional programming language. Fur-
thermore, thorns contain test cases for unit testing. Parallelism, communication,
load balancing, memory management, and I/O are handled by a special compo-
nent called driver which is not part of the flesh and which can be easily replaced.
The flesh (and the driver) have complete knowledge about the state of the appli-
cation, allowing inspection and introspection through generic APIs.

The current version of Cactus provides many computational modules for finite
difference based methods, and has been very successful as indicated by the large
number of scientific publications it has enabled (see above). There exist currently
(December 2007) approximately 540 thorns in over 50 arrangements at the AEI
and LSU, many of which are publicly available. We are currently developing a
new version of the core (Cactus 5) which will extend key support for other ap-
plication domains requiring particle methods, unstructured meshes, multi-patch,
multi-physics, or multi-domain simulations. We have implemented proof of con-
cepts of these with the current Cactus version, and will use this experience to de-
sign efficient generic interfaces for these.

All Cactus development will continue to be an open, community driven process
and based on actual user needs.

3. ALPACA RESEARCH AND DEVELOPMENT

Petascale computing environments are inherently complex, and it is a tedious
task to program for them. Current tools are not adequate; new programme devel-
opment tools need to be developed to help meet this challenge. It is still an open
question what these tools will look like in the end. As they are developed, new
methodologies will need to be tried, and user experience needs to be fed back into
the development process.

There exist many tools to measure performance and to debug applications.
Most of these tools work today at a very low level; for example, parallel debuggers
allow examining variables at the level of Fortran variables, and allow single step-
ping of individual routines or lines of code. While this is important for finding
uninitialised variables and segmentation faults, it is not sufficient to ensure that
the “physics” of the overall simulation is correct.

Similarly, performance measurement tools allow one to time routines, or to
count the number of executed floating point instructions. This level of detail is
important for certain kinds of performance tuning. However, the overall perfor-
mance of a simulation depends also very much on the run-time parameters that
are chosen by the end user, which e.g. decide what grid structure and what reso-
lution is used. Thus the end user needs to be involved in the performance tuning
process. We envision the scenario described in example 1 to be a showcase use of
the Alpaca tools.

Without high-level tools such as envisioned by Alpaca, the user in this scenario
would have had to submit many runs, repeatedly wasting time in the job queue.
She would have had to add “print statements” (explicit calls to file I/O routines)
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Gabriela, a young postdoc from Córdoba in Argentina, wants to perform the
final tests for her new wave extraction module. She takes a set of well-tested
components for binary black hole initial data, time evolution, boundary
conditions, etc., and adds her new module to it. After building the
application on the Tezpur supercomputer at LSU, she submits a job using a
new parameter file she created.

Using the Alpaca debugger user interface, she watches the signal as the
gravitational waves are detected by her module. She notices that the
waveform amplitude increases with radius, which is unphysical. Still using
the debugger, and still from within the same job, she walks through the
individual algorithmic steps of her wave extraction module. She notices that
the problem is caused by the lapse function, which has unexpectedly small
values at small radii. Correspondingly, she switches to a different gauge
condition, and after a few iterations the lapse starts to grow. Since this effect
is only visible in binary black hole systems, she could not have detected it in
a test run on a single-processor machine. After correcting this problem, she
moves on to setting up a simulation with a higher resolution to reproduce a
known published result.

While waiting for the results of this simulation, she notices that the
simulation makes only slow progress. Using the same Alpaca user interface,
she activates some interactive performance monitoring tools for this run.
These tools profile the ongoing simulation, and then access a server with
“performance experience” from earlier runs without her new module,
showing her that her new simulation runs only half as fast as “it should”.
Having this background knowledge, she is able to pinpoint the problem to a
recent change in the horizon finder – not in her own code, as she first
assumed. She then sends an email to the horizon finder developer asking for
advice.

Example 1: A typical envisioned use of the Alpaca tools.

to get access to intermediate data. Tracking down the source of the performance
problem would have required her to submit several production jobs, modifying
her parameter files to obtain timing data for comparison. This tedious procedure
would have cost her at least a week of wrestling supercomputers and their job sub-
mission systems. By using high-level tools, and by interacting with a simulation
instead of merely observing it, she was able to achieve her goals in a single day.

The Alpaca approach follows a multi-layered approach. Effective understand-
ing of code and machine requires, on one hand, an interactive component (i.e., a
user interface) allowing remote access to production level simulations on super-
computers. It requires on the other hand a software framework allowing inter-
action with a running simulation, to obtain data about it and to be able to steer
it. We suggest to provide this through a special API, implemented for the Cactus
framework, and also for science applications which do not use Cactus.

Today’s large scale simulation codes are not homogeneous programmes any
more. They consist of many components, have matured over many years, are
written in multiple languages, and often use a software framework to hold things
together. One can usually assume that each of these components has been tested
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in isolation on small machines. However, combining these components and using
them on a supercomputer with a computing power that is many orders of mag-
nitude larger can lead to unforeseen things occurring. And since the components
are combined by the end user, not by an application developer, it is important to
empower the end user to debug and profile the application.

In contrast to many existing free and commercial utilities, the Alpaca tools will
not be external to the application, but will be built-in, so that they have direct
high-level access to information about the running application, and can interact
with the user on a correspondingly high level. We call this the application level,
as opposed to debugging or profiling on the code level, which deals with individ-
ual Fortran variables or MPI calls. While it is important to deal with code-level
problems to find e.g. uninitialised variables or segmentation faults, it is these days
equally important to be able to deal with a complete application as a whole, and
understand its behaviour on a global level. Instead of only observing a programme,
it is also necessary to query it about its state, and to interact with it to modify this
state.

Finally, successful simulations also depend on the reliability of the system, ne-
cessitating a mechanism where software can compensate for hardware errors. Al-
paca will research improved checkpointing/recovery methods for fault tolerant
computing, based on special MPI implementations. This will let the application
recover after partial system failures, which are increasingly common in large ma-
chines containing thousands or tens of thousands of nodes. By dynamically adapt-
ing the simulation to problems in the computing environment, fault tolerant com-
puting can increase throughput and productivity manifold.

3.1. Application Communities. The application communities described in table 1
are providing requirements to the Alpaca project:

Numerical Relativity: A large number of relativity codes exist which were
designed for Cactus from the beginning, both at LSU and outside: The
freely available AEI/LSU BSSN code [18, 17], the LSU GH (Generalized
Harmonic) multi-block code [37], and the AEI GH excision code [43] are
spacetime evolution codes, Whisky [22, 45] is a hydrodynamics module
that works in conjunction with any spacetime code. Other numerical rela-
tivity groups have their own, independent spacetime codes. This list is not
complete.

Numerical relativity continues to contribute major infrastructure im-
provements to Cactus, such as the addition of mesh refinement [41, 26] or
multi-block methods [40]. The adaptive mesh refinement package PARAMESH
[36, 33] was recently integrated with Cactus.

Astrophysics: The FLOWER code at LSU has already been ported to Cactus.
This 3D hydrodynamics code is used for investigating secular bar-mode
instabilities in rotating neutron stars and mass transfer in binary systems.

Reservoir Studies: A black oil simulator for Cactus has recently been devel-
oped [15], with an emphasis on being able to perform rapid simulations
using large numbers of processors, to enable new types of reservoir stud-
ies. The capabilities of Cactus, such as parameter steering, checkpointing,
and streaming file output, will enable new scenarios in this community.

Computational Fluid Dynamics (CFD): LSU is designing and implementing
a CFD Toolkit [27] in Cactus. This toolkit will enable future Cactus-based
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CFD applications to seamlessly interoperate, for example though the toolkit’s
common data models. This CFD toolkit will give students access to a col-
laborative and integrative problem solving environment for state-of-the-
art high performance computing platforms.

Coastal and Environmental Modelling: LSU participates in a project to de-
velop within Cactus the capability of modelling coastal circulation and
nearshore surface waves in deltaic sedimentary and hydrodynamic envi-
ronments in an integrated modelling framework. This work will extend
the Boussinesq theory for nearshore hydrodynamics to muddy coasts and
non-hydrostatic three-dimensional flow regimes with stratifications. Cur-
rently, a 2D finite difference model called FUNWAVE has been ported to Cac-
tus.

Quantum Gravity: An extensible toolkit to enable the discrete quantum grav-
ity community to perform a variety of high performance computations
within the Cactus framework has been developed. The modularity and
automatic parallelism provided by Cactus are for the first time opening
this field to large scale simulation, and providing new insights into Causal
Sets [39, 35] and Loop Quantum Gravity [23].

Alpaca software development will occur as part of the ongoing Cactus devel-
opment and follow the established procedures, to ensure that the portability and
reliability that people have come to expect from Cactus are not compromised. This
will include producing documentation and example code, designing regression
test cases and performing regular build tests on all major HPC platforms.

3.2. User Interface. Whilst the underlying technologies for debugging and profil-
ing are crucial, the key component for effective and wide-scale use of the infras-
tructure is a well-designed and easy-to-use user interface. Such a user interface
must allow remote access to supercomputers and interaction with jobs running
on thousands of processors. Current supercomputers are used as batch systems
with command line interfaces, and it is often impossible to interact with a run-
ning job. Naturally, this makes for very large turn-around times, especially since
queue waiting times are often significant. The breadth of information that can be
efficiently presented textually is also limited.

Part of the Alpaca project will be research for new ways to let the user interact
with a simulation, taking the special circumstances of HPC computing into ac-
count, which require particularly remote access, scalability, and robustness. The
user interface should be friendly to the science expert, without damaging the effi-
ciency of the application code. The Alpaca tools are going to potentially generate
large amounts of profiling data which cannot reasonably be displayed in a sim-
ple table. Building on existing domain-specific and generic visualisation tools like
paraprof (for TAU [3]) or VisIt [4], Alpaca will research the optimal way to present
these data to the user.

To have a clean separation of functionality, the user interface code should in-
teract with the debugging and profiling infrastructure through a standard set of
library calls. These should be designed such that they can not only be used by a
compiled-in Cactus user-interface component, but also be exposed as network ser-
vices. This will allow the easy construction of other user interfaces; e.g. a portal, a
component within the Eclipse IDE (see below), or even components within visual
workflow frameworks such as Triana [5] and the Swift virtual data system. Such
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FIGURE 1. Alpaca will build on existing Cactus tools including a
web interface which provides information from running simula-
tions and providing steering and visualization interfaces, a Grid-
Sphere portal environment which displays information which is
automatically collected from Cactus simulations, and Mojave [6]
which is a prototype Cactus–Eclipse integration.

a separation into components interacting through defined calls will also facilitate
the use of this infrastructure for applications which are not Cactus-based.

The compiled-in user-interface component should make use of the Cactus web
server component (figure 1) which is already in wide use to interact with and ex-
amine running simulations.1 This allows the debugging and profiling infrastruc-
ture to be always available (compiled in), without hindering the simulation, and
be activated instantly when the user requires it, including for production simula-
tions.

3.3. Debugging. Standard debuggers provide mechanisms to start a programme
or interact with an already-running programme, examine programme data, exam-
ine process data (e.g. a stack-trace), watch and trace data and set conditional or un-
conditional break points, and step through the code on a line-by-line or subroutine
basis. Parallel debuggers additionally provide mechanisms to switch between the
processes which are being examined and examine data from all processors simul-
taneously. However, there is a deep gap between the level of abstraction at which
a standard debugger like gdb or TotalView displays information to the user, and
the level of the algorithm that is actually implemented in the application.

1See http://cactus.cct.lsu.edu:5555/ for a live demonstration.

http://cactus.cct.lsu.edu:5555/


ALPACA 10

The Alpaca project plans to bring traditional debugging functionality up to the
level of the application. The core infrastructure of Cactus will be enhanced to al-
low single-stepping through the schedule. At any point in time, the infrastructure
knows all application-level variables. This allows the examination or visualisation
of such data through both the user interface or via a facility that allows external
visualisation tools to connect to a simulation. Such a facility is already available
through the HDF5 [7] and web server components in the framework and allows
subsets of the data to be chosen.

An important feature not normally available in traditional debuggers, but pos-
sible within Alpaca, is the ability for a user to provide a routine which can be used
to trigger a break-point. This is much more powerful than the simple arithmetic
expression based conditional breakpoints normally available to date. This is possi-
ble because, withing Alpaca, a debugger is not an external programme observing
an application, but is a component that is part of a framework. It would also be
possible to trigger breakpoints based upon performance data as gathered by the
profiling infrastructure discussed in the next section.

With traditional debuggers it is not often possible to back-track in time once
one has stepped past a point in the code; generally one must restart the application
and set a new breakpoint. This is true especially if the programme uses MPI or has
open sockets connecting it to other applications. Cactus, however, possesses the
ability to checkpoint and restart. This will allow Alpaca to incorporate this facility
into the debugging infrastructure, allowing a user to trigger a checkpoint at any
time and then to ask Cactus to roll back the simulation to that checkpoint.2

Whilst application-level debugging is important, it also remains important to
be able to debug at the code level. Alpaca will provide a facility to launch a code-
level debugger such as TotalView, DDT, or gdb from within the infrastructure; see
section 3.5 below.

3.4. Profiling. The key features of a generalised, parallel, application-level profil-
ing tool are the ability to collect any metric of interest, not just those defined by
the developer, and easy selection, navigation and presentation of such data. The
Alpaca tools should complement the many existing performance measurement li-
braries, such as e.g. PAPI, mpiP, or TAU [3], by using these libraries to collect data,
then interpreting these data together with meta-data about the application that
are known to the framework, and finally presenting these data to the user in an
interactive manner.

There are many different metrics which can be used to measure performance or
are of interest to code optimisers. These range from, at the coarsest level, the wall-
clock time of the whole application, to, at the finest level, the number of L1 cache
misses of a single machine instruction. In parallel applications there are many
additional metrics, such as the time spent waiting for other processes to reach a
barrier. Integration libraries providing new metrics are already available within
Cactus to some extent, and this can for instance be used to use the PAPI perfor-
mance library on hosts where it is available. The Alpaca tools need to enhance
this infrastructure as necessary, including the ability to gather information from
job queuing systems and hardware cluster monitors. They need furthermore to

2This on-line roll-back is not useful in the case of a critical error leading to the failure of a whole
process, e.g. a segmentation fault. For this case it will need to be combined with a fault-tolerance
mechanism such as that of FT-MPI and Open MPI (see below).
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provide a framework to collect such performance information, to collect algorith-
mic meta-data (e.g. iteration numbers, numerical accuracy, total mass), and let the
user interpret both kinds of data in conjunction with each other. This allows the
user to examine the performance on the algorithmic level.

Cactus already places timing caliper points around each routine. Alpaca plans
to enhance this infrastructure to distinguish calls from different contexts, utilising
the information the flesh has about the application schedule. Additionally it will
become possible to set caliper points between any two points in the schedule, e.g.
by use of a graphical representation of the workflow; this will be possible at run
time, without recompiling the application.

The Alpaca tools also need to provide features to aggregate data from all pro-
cessors or sets of processors. This latter will enable the user to distinguish between
parallel performance features at many levels of the hierarchy of current or envi-
sioned high-end systems – e.g. a single process, processes running on several cores
of the same processor, processors on the same SMP board or on the same intercon-
nect, or processes running on different systems connected by a LAN or WAN.

In addition to access to the data though the user-interface for a currently run-
ning application, Alpaca also needs to develop a facility to store the profiling data
to disk or stream it to a remote site for off-line analysis. This will eventually lead
to a body of performance experience, i.e., a set of performance results documented
by automatically collected meta-data describing the circumstances under which it
was gathered.3 An infrastructure providing a secure long-term storage for such
data is currently being developed as part of the AstroGrid-D project [9] at the
Albert-Einstein-Institut in Potsdam, Germany.

3.5. Eclipse Integration. The Eclipse framework [10] delivers “rich-client applica-
tions”, i.e., it can be used as intelligent front-end to arbitrary servers. The Parallel
Tools Platform (PTP) [11], implemented in Eclipse, provides a portable platform
enabling the integration of scalable tools for parallel computing architectures. PTP
is creating an environment which simplifies end-user interaction with parallel sys-
tems. For example, it is also planned that PTP will provide a parallel (low-level)
debugger.

The Alpaca tools should be integrated with the Eclipse framework. This can
build on a previous undergraduate project at LSU called Mojave [12]. On one
hand, Eclipse is an ideal basis for a rich and portable front-end to the Cactus de-
bugging and profiling infrastructure that the Alpaca project plans to develop. On
the other hand, PTP will incorporate many tools that will be important for Cactus
users, such as the above-mentioned debugger, which can be enhanced by provid-
ing to them meta-data about the application, via an interface between Cactus and
Eclipse.

3.6. Fault Tolerance. Petascale computing environments will contain tens of thou-
sands of nodes, and single node failures will need to be dealt with in the course of
a simulation, without aborting the whole application and forcing it to restart from
an old checkpoint after being manually re-queued by the user. To provide fault tol-
erance for MPI-based simulation codes, Alpaca is considering Open MPI [29, 13],

3The FFTW library [8] uses a similar concept, although only locally to a machine: It finds certain op-
timal parameter choices experimentally and stores these in a database which is specific to the machine
on which it runs. Later, these data can quickly be used without requiring user action.
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a new MPI implementation which incorporates features from Fault Tolerant MPI
(FT-MPI) [14] which has additional error-recovery mechanisms. A code using
Open MPI (or FT-MPI) has the capability to notice a failure, potentially respawn a
failed process, and thus recover and continue a simulation.

The data for the new process could be taken from a checkpoint file on disk, or
from an in-memory checkpoint coupled with a set of redundant checksum nodes.
The Alpaca project will research the best way to use Open MPI for real world ap-
plications to provide file-based or in-memory checkpointing for scientific comput-
ing applications. This includes finding ways to dynamically change the number
of processors available to the application. Incidentally, being able to change the
number of processors can also provide important performance benefits if the com-
munication pattern or memory requirements of a simulation have changed.

4. CONCLUSIONS

As the speed and performance of high end computers have increased over the
last decade, it has also become increasingly more difficult to program such parallel
computers. The difficulty of developing high-performance software is recognised
today as one of the most significant challenges in the effective use of large com-
puters. There is a lack of effective software tools that aid in the development of
complex, collaborative scientific applications.

Above we have outlined Alpaca, a concept and a project to develop high-level
tools allowing to examine and validate the correctness of an application, and aid-
ing in measuring and improving its performance. Alpaca builds on Cactus, an
HPC software framework for scientific applications. As with other software frame-
works, applications are built from separately developed and tested components.
The Alpaca tools are components themselves, so that they are built into the appli-
cation and can interact with it.

Complementing existing debuggers and profilers, Alpaca’s approach works at
a much higher level, namely at the level of the components which encode the
physical equations and their discretisations, not at the level of individual func-
tions or variables. Specifically, Alpaca addresses fault tolerance that will be needed
for increasingly large scale machines, performance monitoring to make efficient use
of such machines, and interactive debugging to locate and remedy algorithmic er-
rors. The Alpaca tools will be tied together by a common user interface to make
them accessible to end users, and their development will involve a broad range of
application areas.

In order to design, develop, and maintain complex applications, it does not suf-
fice to focus on the correctness and performance of only the main kernels, although
this remains nevertheless important. The overall application, which may consist of
many components or modules that are assembled by the end user, must be correct
and must perform. We assume that Alpaca’s integrative and framework-based
approach will lead to more reliable and highly efficient applications which can be
developed at a shorter time scale.
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