

Wavelets for everything

Wei Ku (顧 威) CM-Theory, CMPMSD, Brookhaven National Lab Department of Physics, SUNY Stony Brook

Acknowledgement

Funding sources

Basic Energy Science, Office of Science, Department of Energy

Former group members

William Garber BNL

Dmitri Volja MIT

References

Wavelets

- Daubechies, I., *Ten Lectures on Wavelets*, SIAM, Philadelphia (1992).
 Cohen, A., Daubechies, I. and Feauveau, J.-C., *Biorthogonal Bases of Compactly Supported Wavelets*, Communications on Pure and Applied Math, Vol. XLV, 485-560 (1992).
 Beylkin G. Keiser I M.
- Beylkin, G., Keiser, J. M., An Adaptive Pseudo-Wavelet Approach for Solving Nonlinear PDEs Wavelet Analysis and Applications, Vol.6, Academic Press (1997).
- Wim Sweldens, *The Lifting Scheme: A Custom-Design Construction of Biorthogonal Wavelets*, Applied and Computational armonic Analysis, 186 200 (1996).

Applications in Electronic Structure calculaiton

- Harrison, R. J., Fann, G. I., Yanai, T., Gan, Z., Beylkin, G. Multiresolution quantum chemistry: Basic theory and initial applications, Journal of Chemical Physics, Vol 121. N. 23, 11587-11598 (2004).
- Sekino, H., Maeda, Y., Yanai, T., Harrison, R., Basis set limit Hartree-Fock and density functional theory response property evaluation by multiresolution multiwavelet basis, Journal of Chemical Physics, Vol 129. N. 3, 034111.1-6 (2008).
- Arias, T., *Multiresolution analysis of electronic structure: semicardinal and wavelet bases*, Reviews of Modern Phys., Vol 71, N. 1, 267-311 (1999)

Information and efficiency

- In the absence of prior knowledge of the structure of the information, an efficient representation needs to be self-adaptive:
 - \rightarrow capturing the smooth average feature and the sharp detail simultaneously.

$$f(x) = \sum_{i} c_i b_i(x)$$

 $\rightarrow b_i(x)$ should be compact in both real space and Fourier space

Wavelet transform

$$V_J = V_{j-1} \oplus W_{j-1} = V_0 \oplus W_0 \oplus \ldots \oplus W_{j-1}$$

- compact support \rightarrow computational efficiency: O(N) faster than FFT O(N log(N))
- position independent transform \rightarrow same basis function everywhere
- built-in multi-resolution characteristic \rightarrow same basis function of different width
- *s*: averaged information, small amount of dense data
 - $\leftarrow \rightarrow$ basis function named "scaling function" $\phi(x)$ spanning V
- *d*: detailed information, sparse data only near sharp feature $\leftarrow \rightarrow$ basis function named "wavelet" $\psi(x)$ spanning *W*

Lifting algorithm as an example

1-step in CDF(2,2) wavelet transform
 Cohen, Daubechies, and Feauveau

• inverse transform \rightarrow reverse the operation

Wavelet transform

Repeat the two-scale relation until the coarsest level is reached

FWD
$$s_{k}^{j} = \sum_{m} \tilde{h}_{m-2k} s_{m}^{j+1}$$

 $d_{k}^{j} = \sum_{m} \tilde{g}_{m-2k} s_{m}^{j+1}$
INV $s_{m}^{j+1} = \sum_{k} (h_{m-2k} s_{k}^{j} + g_{m-2k} d_{k}^{j})$

where

$$s_{k}^{j} = \left\langle \widetilde{\varphi}_{j,k} \middle| f \right\rangle \qquad d_{k}^{j} = \left\langle \widetilde{\psi}_{j,k} \middle| f \right\rangle$$
$$\widetilde{h}_{m} = \left\langle \widetilde{\varphi}_{j,k} \middle| \varphi_{j+1,m+2k} \right\rangle \qquad \widetilde{g}_{m} = \left\langle \widetilde{\psi}_{j,k} \middle| \varphi_{j+1,m+2k} \right\rangle$$
$$h_{m} = \left\langle \widetilde{\varphi}_{j+1,m+2k} \middle| \varphi_{j,k} \right\rangle \qquad g_{m} = \left\langle \widetilde{\varphi}_{j+1,m+2k} \middle| \psi_{j,k} \right\rangle$$

CDF(2,2) wavelets

CDF(4,4) wavelets

Sampled Function

Transformed data s(0,k), d(0,k),d(1,k)...,d(J,k) յ, այ multi 0.5000 0.0000 -0.5000 -1.0000 high freq signal -1.5000 -2.0000 -2.5000low freq signal -3.0000 --3.5000 -4.0000 V -4.5000 -5.0000 peak signal -5.5000 -6.0000 -6.5000

10.0000 20.0000 30.0000 40.0000 50.0000

0.0000

0.5000

multi-PEAK

÷

60.0000

-7.0000

-7.5000

-8.0000

-8.5000

-3.5000

-4.0000 -4.5000

-5.0000

-5.5000

-6.0000

-6.5000

-7.0000

-7.5000

-8.0000

-8.5000

0.0000

s(1) / d(1) x 10-~ 1.0000 .5000 .0000).5000).0000).5000 .0000 .5000 ix 10³

0.6000

0.8000

1.0000

0.4000

0.0000

0.2000

i x 10³ 1.0000 1.5000 2.0000

Low Freq Signal s(k)

Wavelet transform

$$V_J = V_{j-1} \oplus W_{j-1} = V_0 \oplus W_0 \oplus \ldots \oplus W_{j-1}$$

- compact support \rightarrow computational efficiency: O(N) faster than FFT O(N log(N))
- position independent transform \rightarrow same basis function everywhere
- built-in multi-resolution characteristic \rightarrow same basis function of different width
- *s*: averaged information, small amount of dense data
 - $\leftarrow \rightarrow$ basis function named "scaling function" $\varphi(x)$ spanning V
- d: detailed information, sparse data only near sharp feature
 - \leftarrow > basis function named "wavelet" $\psi(x)$ spanning W

Properties of wavelets

Strict compactness in real space

Compactness in Fourier space

Bi-orthogonal: duals also wavelets
→ overlap matrix unnecessary
CDF (4,4) wavelets: Interpolating f(x_i) = c_i for φ_i centered at x_i

- vanishing low-order moments
- $\int \varphi(x) dx = 1; \quad \int x^n \varphi(x) dx = 0; \quad n = 1...N 1$ $\int x^n \psi(x) dx = 0; \quad n = 0...N 1$
- fits 4th order polynomials
- multipole expansion \rightarrow monopole

Compact in both real and Fourier space

- localized in k.
- Potential V(x) sparse
- Kinetic Energy T(k) sparse

Bi-orthogonality

Duals of wavelets are also wavelets.

Bi-orthogonality

CDF(N,N') interpolating wavelets

 ϕ has zeros at x_k so coefficienk s_k equals value of function at grid points at this scale.

$$f(x) = \sum_{k} s_k \varphi_k(x) \qquad \varphi_{k_1}(x_{k_2}) = \delta_{k_1,k_2} \qquad f(x_k) = s_k$$

Moment conservation of CDF(N,N') wavelets

DD(4,4) wavelet ψ

- interpolates polynomials up to x³
- has zero moments up to 3rd order.
- Coulomb interaction trivial and efficient.
- Only 0^{th} moment of ϕ contributes.
- Acts like small number of point charges.

$$\int \psi \, dx = 0 \qquad \int x \psi \, dx = 0 \qquad \int x^2 \psi \, dx = 0 \qquad \int x^3 \psi \, dx = 0$$
$$\int \varphi \, dx = 1 \qquad \int x \varphi \, dx = 0 \qquad \int x^2 \varphi \, dx = 0 \qquad \int x^3 \varphi \, dx = 0$$

Example: significant reduction of multipole expansion

$$\Phi(x) = \int \frac{\rho(x')}{|x - x'|} d^3 x'$$

$$\Phi(x) = \frac{q}{r} + \frac{p \cdot x}{r^3} + \frac{1}{2} \sum_{i,j} Q_{i,j} \frac{x_i x_j}{r^5} + \text{higher} - \text{order}$$

$$Q_{i,j} = \int (3x'_i x'_j - r'^2 \delta_{i,j}) \rho(x') d^3 x'$$

for ρ represented by CDF44 wavelets,

first 3 moments are zero, so

q, p, $Q_{i,j}$ are computed from the coarse scale data only: (scaling function coefficients) There is much less data to compute.

Higher dimension: tensor wavelets in nonstandard form

Standard Form:

Forward Transform X and Y

Recur on whole row/col

Disadvantage:

mix scales; Operator matrix *not simple*

Operator Matrix (Laplacian):

recur on V V block. Do not mix scales COMPACT SUPPORT \rightarrow O(N): within each scale, matrices are banded All operations O(N)

Block of Matrix =
$$\langle \psi_{j,k1} | \nabla^2 | \psi_{j,k2} \rangle = \langle \psi_{j,k1-k2} | \nabla^2 | \psi_{j,0} \rangle$$

separate scales treated separately;

no mixed scales

Nonstandard Form: Forward Transform X and Y Recur on V V average data Advantage: Data sparse; Operator matrix sparse

Example: 2D cubic spline forward transform

Original 512x512

Level 2 64x64

Level 4 256x256

Level 1 32x32

Level 3 128x128

Level 0 16x16

Linear algebra: matrix vector multiplication

Timing: Laplacian operator

j	Size, m x m	Time, sec		Speed = m^2/T (10 ⁶ /s)		Speed,
		Dense	Sparse	Dense	Sparse	Sparse/ Dense
2	1024x1024	2.9	1.4	0.36	0.75	2.1 x faster
3	2048x2048	11.5	4.1	0.36	1.02	2.8 x faster
4	4096x4096	83	21.5	0.20	0.78	3.9 x faster
5	8192x8192	837 (swaps)	98	0.080	0.68	8.5 x faster

- Sparse wavelets faster than dense
- Handles larger problem with same amount of memory

- interpolating property: average data $V \approx$ value of function at grid points
 - remain within sparse representation
 - wavelet transform: COMPACT SUPPORT \rightarrow O(N)

An example for many-body perturbation theory

• convolution involving $1/\omega$ tail of $G(\omega)$:

 $P(\omega_n) = \sum_{i=0}^{\infty} G(\omega_n) \cdot G(\omega_n + \omega_i)$

 ∞

:
$$P(1,2) = G(1,2) \cdot G(2,1)$$
$$P(\tau) = G(\tau) \cdot G(-\tau)$$

• explicit inclusion of $\tau = 0^+ \& 0^-$ (2nd generation of wavelets)

Non-uniform grid in Matsubara time

• convolution involving $1/\omega$ tail of $G(\omega)$:

$$P(1,2) = G(1,2) \cdot G(2,1)$$

$$P(\omega_n) = \sum_{i=0}^{\infty} G(\omega_n) \cdot G(\omega_n + \omega_i)$$

$$P(\tau) = G(\tau) \cdot G(-\tau)$$

- This is the same as using the scaling function across level as basis
- Easy to handle mismatched grid point (inverse wavelet transform)

$$W(\tau) = v \cdot \delta(\tau) + \int_0^\beta v \cdot P(\tau - \tau') W(\tau') d\tau'$$

Wavelet++ package

Why Use Wavelets:

- compact support in space x
- localized in scale k:
 - high res detail, low res averages
 - systematic control of error
- sparse representation: identify, compute with, store only critical data All operations done without leaving sparse represent.
- conservation of moments
- interpolating properties
- fast O(N) algorithms for
 - wavelet transform
 - differential operators (Laplacian; Kinetic Energy)
 - nonlinear operations (External Potential)
 - products

Applications:

- physical problems
- biorthogonal bases (bra/ket)
- large data sets
- high resolution

Wavelet library

Data Structures:

Filter
basic convolution
LiftingStep
WaveletDef:
define wavelet coeff h,g provide transform
WaveletRepDense
WaveletRepSparse store data

Operations:

- forward transform
- inverse transform
- function composition
 - product
 - convert to dense
 - convert to sparse

Vector Space library

Data Structures:

 VectorSpaceDense VectorSpaceSparse
 Overlap Matrix for finding Duals Explicit treatment of crystal translational symmetry
 Bivector
 Wrapper associating
 WaveletRep with VectorSpace
 TranslationalyInvariantMatrix

Operations:

- Inherit Wavelet operations
 DualConj
 AddMult: Matrix Multiply
- AddMult: Matrix Multiply
 InnerProduct


```
WDEF wav = &cubic_spline;
BASIS basis(wav);
TinyI extent(512,512);
WREP wrep(extent, basis);
```

```
loadPhoto(wrep, fnamePhotoIn);
while(nlev-- > 0) {
   string fname = "photo"; fname += nlev + ".dat";
   wrep.transFwd(1);
   savePhoto(wrep, fnamePhoto);
}
```



```
typedef WaveletDef<double> WDEF;
typedef WaveletDefLiftStep<double> LSTEP;
```

```
// Haar Wavelet with Lifting Steps
WDEF haar("haar", 1/sq2, sq2,
    LSTEP(LS_PREDICT, 1, 1, -1.0),
    LSTEP(LS_UPDATE, 0, 1, 0.5));
```

```
// Daubechies Wavelet as Convolution
h = (1+sq3)*sq2/8,
        (3+sq3)*sq2/8, // Filter coefficients
        (3-sq3)*sq2/8,
        (1-sq3)*sq2/8;
g = h(3), -h(2), h(1), -h(0);
std::vector<LSTEP> v;
v[0] = LSTEP(h,g,h,g); // convolution step
WDEF daubechies("daubechies", 1, 1, v);
```

Vector space library is easy to use: algebra & interface

dense or sparse:

- ip = InnerProduct(v1, v2);
- ip = InnerProductShift(v1, v2, deltaCell);
- vz = AddMult(vy, LaplacianMatrix, vx);
- vz = DualConj(vy, vx);
- vz = Product(v1, v2, v3);
- vz.FunctionComp(vx, functionToApply);

summary: using blitz++ algebra on blitz::Array base class

Vector space library is easy to use: Laplacian operator

```
// constructors
BASIS basis(WAV);
BOXS geometry(fnameBox);
VECSPACE SPARSE vecspaces (basisp, geometry);
VECSPACE DENSE vecspaced(basisp, geometry.extent());
BIVEC SPARSE VEC1 (vecspaces, VEC BRA);
BIVEC SPARSE VEC2 (vecspaces, VEC BRA);
BIVEC DENSE vec1 (vecspaced, VEC BRA);
BIVEC DENSE vec2(vecspaced, VEC BRA);
LAPLACIAN mat(vecspaces);
// input data
storePolyDenseTopLevel(VEC1, vec1, function);
// convert to sparse
convertToSparse(VEC1, vec1);
// VEC2 += mat * VEC1;
AddMult(VEC2, mat, VEC1);
// convert to dense
convertToDense(VEC2, vec1);
// plot
string fnameOut = "denseout.dat";
plotBox(fnameOut, vec1);
```


- Information on the energy functional used
- Easy implementation of new fucntionals
- get_gradient()
- get_dE_2nd_order_corr()

- Information on the constraints used
- Lagrange matrix
- apply()
- modify_gradient()

- Information on the boundaries within unit cell
- Information on the crystal periodicity
- apply()

- Information on the convergence criteria
- apply()

```
4
```

```
function CG_minimization {
   boundary.apply(s);
   constraint.apply(s);
   h = functional.gradient(s);
   h = constraint.modify_gradient(h, s); // get lambda
   boundary.apply(h);
   g = h;
   dE = functional.dE_2nd_order_corr(s, h, g, lambda);
   s = s + h * dE;
   constraint.apply(s);
```

until(converged) {

```
g = functional.gradient(s);
g = constraint.modify_gradient(g, s); // get lambda
boundary.apply(g);
h = h * (<g|g>/<gold|gold>) - g;
dE = functional.dE_2nd_order_corr(s, h, g, lambda);
s = s + h * dE;
constraint.apply(s);
```

```
}
```

```
class boundary {
    apply(s) {
        // set s to zero outside domain
    }
};
```

```
class constraint {
  modify_gradient(hs, ss) {
    states_unpartitioned su(s);
    states_unpartitioned hu(h);
    // actual code exploits symetry
    // only one row needed
    lambda(j,i) = InnerProduct(su(j),hu(i));
    hu = hu - lambda(j,i) su(j)
    }
    apply(ss) {
      // apply symmetric orthogonalization to ss in place.
    }
};
```

```
class functional {
  gradient(hs, ss) {
    hs = wavelet_Hamiltonian_functor(ss);
  }
  dE_2nd_order_corr(ss, hs, gs, constraint, dE) {
    // H represents hamiltonian functor in get_gradient
    dE = <gs|gs> / (<hs | H | hs> - lambda(i,i) <hs|hs>);
  }
};
```

class states_unpartitioned {
 int nstates;
 TinyI ncells;
 int superindex(nstate, cell) { } // map indices
 int nstate(superindex) { }
 TinyI cell(superindex) { }
 // algebra on states incorporating shift between cells
 // inner product
 // overlap matrix
};