
A Form Compiler based on Symbolic

Computations

Martin Sandve Alnæs and Kent-Andre Mardal, Simula Research Laboratory

January 31, 2008

1 Introduction

We have combined symbolic mathematics with code generation to be able to
specify finite element methods in a user–friendly environment while maintaining
efficiency. By employing a symbolic engine in a high–level language we allow
the user to specify the weak form of the PDE in an abstract and user–friendly
format. Furthermore, the symbolic framework allow us to do certain calculations
automatically that we earlier typically did by hand, e.g., the calculation of the
Jacobian in the case of a nonlinear PDE, or differentiation of complex material
laws for hyper-elastic materials [4].

Our efforts have resulted in the open source software package SyFi [2], which
is part of the FEniCS project [8]. SyFi stands for symbolic finite elements and
is implemented in C++ and Python. SyFi is built on top of the symbolic C++
library GiNaC [6] and uses its Python interface Swiginac [22]. SyFi is largely
divided in two: a kernel and a form compiler. We refer to the form compiler as
SFC.

The kernel consists of a collection of tools for symbolic computations on poly-
nomial spaces and polygonal domains, and a collection of elements including
Arnold-Falk-Winther element [5], the Crouzeix-Raviart element [7], the stan-
dard Lagrange elements of arbitrary order, the Nedelec elements [19, 20], the
Raviart-Thomas element [21], and the robust Darcy-Stokes element [17]. The
SyFi kernel is roughly comparable to FIAT [9, 11, 12, 10], which tabulates finite
elements using numerical techniques.

The SyFi Form Compiler (SFC) can be compared to FFC [15, 16, 13, 14].
It takes as input a symbolic description of a variational form and a set of finite
elements and generates low level C++ code. The generated code complies with
the UFC [1, 3] interface, and can be used in DOLFIN to assemble matrices and
vectors. SFC supports Just-In-Time compilation, via the package Instant [18],
such that we can define the variational form within Python, then generate C++
code, compile and link this code into a Python extension module, and load the
module dynamically into Python.

We next present a short code example using the SyFi form compiler to-
gether with PyDOLFIN, before we show some benchmark results comparing

1

from sfc import *

Define integrand
def convection_vector(v, w, itg):

GinvT = itg.GinvT()
Dw = grad(w, GinvT)
wDw = dot(w, Dw)
return dot(wDw, v)

Define elements and form arguments
element = VectorElement("Lagrange", "tetrahedron", 2)
v = TestFunction(element)
w = Function(element)

Generate and compile code
F_form = CallbackForm(basisfunctions = [v],

coefficients = [w],
cell_integrands = [convection_vector])

J_form = Jacobi(F_form)
compiled_F_form = compile_form(F_form)
compiled_J_form = compile_form(J_form)

the efficiency of computing some element tensors with other libraries.

2 Defining and compiling forms

We’ll now step through the lines of the code in Figure (2). First, the code
defines a function convection vector. This function takes as arguments symbolic
expressions for the test function v and coefficient function w, plus an “integral
context object”. The latter object can be queried to get a symbolic representa-
tion of the affine mapping G, its transposed inverse GinvT, and other geometric
quantities like the normal vector n in boundary integrals. Using the operators
dot and grad, the function computes the term w ·∇w ·v which is the integrand
of our form.

Second, we define a finite element, namely a second order vector Lagrange
element defined on a tetrahedron. Then we define a test function v and a
coefficient function w, which are the arguments of the form. FFC users should
notice that the syntax for elements and arguments is the same.

Third, we stitch the arguments and integrand function together to define the
F form, and define J form as the Jacobi of the nonlinear form F. Notice that the
Jacobi computation is completely automatic, utilizing symbolic differentiation
tools.

Fourth, the form objects are passed to the code generation and compilation

2

Assemble global vector and matrix
from dolfin import *
mesh = UnitCube(10,10,10)
asm = Assembler(mesh)

class MyFun(cpp_Function):
def __init__(self, mesh):

cpp_Function.__init__(self, mesh)
def eval(self, v, x):

v[0] = 0.3*x[0]
v[1] = 0.2*x[1]
v[2] = 0.1*x[2]

def rank(self):
return 1

def dim(self,i):
return 3

w_function = MyFun(mesh)
coefficients = ArrayFunctionPtr()
coefficients.push_back(w_function)

F = Vector()
J = Matrix()
F_dofmaps = DofMapSet(compiled_F_form, mesh)
J_dofmaps = DofMapSet(compiled_J_form, mesh)
asm.assemble(F, compiled_F_form, coefficients, F_dofmaps,

None, None, None, True)
asm.assemble(J, compiled_J_form, coefficients, J_dofmaps,

None, None, None, True)

phase, and we get back compiled C++ objects that are implementations of the
UFC interface.

Finally, the UFC objects can be passed to PyDOLFIN to assemble the global
matrix and vector, as seen in Figure (2). At the time of writing, this is possible
in the development version of DOLFIN, but be aware that some details of the
code shown here may change (in particular because of ongoing improvements to
the PyDOLFIN interface).

3 Benchmarks

Below we will present some benchmarks showing the efficiency of the generated
code for computing the element tensor for a few forms. We will compare with
quadrature based examples written in Diffpack and Deal.II (only on cubes), and

3

Figure 1: Time to compute the element tensor of the mass form on quadrilateral
elements, in microseconds

code generated by FFC (only on simplices). The code generated by SyFi is run
with both analytic integration and quadrature, and with and without further
optimization.

Example 3.1 Mass matrix

Aij = a(Ni, Nj) =
∫

T

Ni(x) Nj(x)dx (1)

After analytical integration, the computation of the mass matrix will consist of
one floating point multiplication per entry in the matrix regardless of the choice
of element and its order, while with the quadrature based implementation the
number of quadrature points is a growing factor. The resulting speedup can be
seen in Figure (1).

Example 3.2 Convection vector

Ai = a(Ni; w) =
∫

T

w · ∇wNi dx ≡ Fi(G−T , J,w), (2)

With analytical integration, Fi(G−T , J,w) are polynomials that are linear in
G−T and J and quadratic in w0

k. Figure (2) shows the benchmark results.

4

Figure 2: Time to compute the element tensor of the convection vector form on
quadrilateral elements, in microseconds

Example 3.3 Jacobian of nonlinear convection

Aij =
d

dw0
i

[
a(Nj ; w0)

]
=

d

dw0
i

∫
T

w0 · ∇w0 Nj dx

=
∫

T

(w0 · ∇Nj + Nj · ∇w0) ·Ni dx ≡ Fij(G−T , J,w0),
(3)

In this case Fij(G−T , J, w0) are linear polynomials in G−T , J and w0
k after

analytical integration. Figure (3) shows the benchmark results.

4 Conclusions

In cases where analytic integration is feasible, it can result in a major speedup
in the computation of the element tensor. For elements defined on simplices,
the performance of SyFi is roughly the same as FFC (without FErari). One
point to notice is that if coefficient functions from high order finite element
spaces are involved in nonlinear terms in the form, the expressions blow up and
the gain may be lost. A good factorization algorithm could maybe remedy this
problem. Preliminary attempts to optimize the symbolic expressions prior to
code generation have been only partially successfull.

5

Figure 3: Time to compute the element tensor of the convection jacobi form on
triangle elements, in microseconds

Moreover, the code generation process can be quite intensive in terms of
memory usage and computing time. The code generation based on quadrature
is less demanding, and the resulting code is (as demonstrated) much more effi-
cient than the implementations in Diffpack and Deal.II, the reason being that
Diffpack and Deal.II provide their abstractions at the C++ level. Thus, both
the efficiency gain caused by generating low level code and the advantages of
working with a more abstract input format based on symbolic tools are retained
independent of integration method chosen.

References

[1] M. Alnæs, H.-P. Langtangen, A.Logg, K.-A. Mardal,
and O. Skavhaug, UFC Specification and User Manual, 2007.
http//www.fenics.org/ufc/.

[2] M. Alnæs and K.-A. Mardal, SyFi, 2006. http://www.fenics.org/syfi/.

[3] M. S. Alnæs, H. P. Langtangen, A. Logg, K.-A. Mardal, and
O. Skavhaug, UFC, 2007. http://www.fenics.org/ufc/.

6

[4] M. S. Alnæs, K.-A. Mardal, and J. Sundnes, Application of symbolic
finite element tools to nonlinear hyperelasticity, in Fourth national confer-
ence on Computational Mechanics (MekIT’07), B. Skallerud and H. Ander-
sson, eds., NO-7005 Trondheim, 2007, Tapir Academic Press, pp. 87–101.

[5] D. N. Arnold, R. S. Falk, and R. Winther, Mixed finite element
methods for linear elasticity with weakly imposed symmetry, Submitted to
Math. Comp., (2006).

[6] C. Bauer, C. Dams, A. Frink, V. V. Kisil, R. Kreckel, A. Shep-
lyakov, and J. Vollinga, GiNaC, 2007. http://www.ginac.de.

[7] M. Crouzeix and P. Raviart, Conforming and non–conforming finite
element methods for solving the stationary Stokes equations, RAIRO Anal.
Numér., 7 (1973), pp. 33–76.

[8] FEniCS, FEniCS project. http//www.fenics.org/, 2007.

[9] R. C. Kirby, FIAT: A new paradigm for computing finite element basis
functions, ACM Trans. Math. Software, 30 (2004), pp. 502–516.

[10] , FIAT, 2006. http://www.fenics.org/fiat/.

[11] R. C. Kirby, Optimizing FIAT with Level 3 BLAS, to appear in ACM
Transactions on Mathematical Software, (2006).

[12] R. C. Kirby, Optimizing FIAT with the level 3 BLAS, to appear in ACM
Trans. Math. Software, (2006).

[13] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Trans-
actions on Mathematical Software, 32 (2006), pp. 417–444.

[14] , Efficient compilation of a class of variational forms, ACM Transac-
tions on Mathematical Software, 33 (2007).

[15] A. Logg, FFC user manual, 2007. http//www.fenics.org/ffc/.

[16] A. Logg et al., FFC. http//www.fenics.org/ffc/, 2006.

[17] K.-A. Mardal, X.-C. Tai, and R. Winther, A robust finite element
method for Darcy–Stokes flow, SIAM J. Numer. Anal., 40 (2002), pp. 1605–
1631.

[18] K.-A. Mardal and M. Westlie, Instant. http//www.fenics.org/instant,
2007.

[19] J.-C. Nédélec, Mixed finite elements in R3, Numer. Math., 35 (1980),
pp. 315–341.

[20] , A new family of mixed finite elements in R3, Numer. Math., 50
(1986), pp. 57–81.

7

[21] P. A. Raviart and J. M. Thomas, A mixed finite element method
for 2-order elliptic problems, in Mathematical Aspects of Finite Element
Methods, Lecture Notes in Mathematics, No. 606, Springer Verlag, 1977,
pp. 295–315.

[22] O. Skavhaug and O. Certik, Swiginac, 2006.
http://swiginac.berlios.de/.

8

