Applications of High Frequency Geostationary Satellite Data in Hurricane Surveillance and Research

by

Nan Walker Director, Earth Scan Laboratory Coastal Studies Institute Associate Professor, Dept. of Oceanography and Coastal Sciences Louisiana State University <u>nwalker@lsu.edu</u>

> Alaric Haag Systems' Administrator, Earth Scan Laboratory Coastal Studies Institute Louisiana State University <u>haag@lsu.edu</u>

PRESENTED AT THE *PETASHARE ALL HANDS MEETING* AT LSU MARCH 3, 2008

Missions:

Real-time data:

http://www.esl.lsu.edu

Emergency Response Research Education

NOAA AVHRR 1988 GOES-8 GVAR 1995 Orbview-2 SeaWiFS 1997 Terra/Aqua MODIS 2002 Oceansat-1 OCM 2003 RADARSAT/ERS-2 SAR 2003 Hurricane track and intensity forecasting using GOES GVAR S.A. Hsu and N. D. Walker

**Lack of sufficient atmospheric and oceanic data is a major obstacle to modeling hurricane intensity

Cloud Top Temperatures, Hurricane Intensity Changes, Radius of Maximum Wind

Surveillance of Dry Air Advection in Mid and Upper Atmosphere

✤<u>Upper Level Winds</u> using water vapor data

✤ Ocean feature detection/tracking

◆<u>Sea Surface Temperatures, Cool Wakes,</u> Air-sea Interactions

Hurricane Surveillance Using GOES GVAR Channel 3 (Mid-Upper Atmosphere Water Vapor)

Surveillance of Gulf of Mexico Currents and Eddies ESL "de-clouded" GOES Night-time Sea Surface Temperature Image

SST and SSH Pre-Katrina

Daily Surveillance of

- Loop Current,
- Cool Wakes,
- Air-sea interactions

SST and SSH Post-Katrina

Model simulation of effects of cold water and dry land on hurricane wind speed

(From Emanuel, 2005)

Decay of Wind Speed over Dry Land

Cold Water Rapidly Weakens the Hurricane in the Lower Levels

Priorities for Petashare

- 1. Future GOES-12 Expanded View to include SH to 20° S (30 minutes)
- 2. GOES-8 and GOES-12 NH since January 2001 (30 minutes)
- 3. Other datastreams:

NOAA AVHRR – 5 channels SeaWiFS – 8 channels MODIS- 36 channels OCM – 8 channels

Advantages of Online

- 1. Time –series for research
- 2. Model initialization and validation
- 3. Rapid Access and Visualizations "on the fly"
- 4. Archive Integrity

Scenarios for the storage of GOES data

Scenario	Details	Total Storage Requirements		
Half-hourly 1: ExtNorthHem scans, ignore Vis data	48 scans / day, 4 channels @ 4km @ 13M / channel = 52M / scan	Daily Weekly Monthly Yearly	2.5 GB 18 GB 72 GB .94 TB	
Half-hourly: 2 ExtNorthHem scans with Vis data (daylight hours only)	Adding: 24 scans / day, 1 channel @ 1km @ 200M/channel = 200M/scan	Daily Weekly Monthly Yearly	8 GB 57 GB 230 GB 2.96 TB	(includes totals immed. above)
Quarter-hourly 1: ExtNHem + CONUS scans, ignore Vis data	96 scans / day, 4 channels @ 4km @ 17M / channel = 68M / scan	Daily Weekly Monthly Yearly	6.5 GB 46 GB 184 GB 2.4 TB	
Quarter-hourly 2: ExtNHem + CONUS scans with Vis data	Adding: 48 scans / day, 1 channel @ 1km @ 200M / channel = 200M / scan	Daily Weekly Monthly Yearly	16 GB 64 GB 256 GB 3.33 TB	(includes totals immed. above)
Full Disk: Replaces one ExtNHem scan every three hours	8 scans / day, all channels @ (450 + 28) MB / (Vis + other) channel = 562 MB / scan (daylight) = 112 MB / scan (night) = 4*562 + 4*112 - 8*200 / day	Daily Weekly above) Monthly Yearly	17 GB 120 GB 480 GB 6.24 TB	(includes totals immed.
All data: (Add Southern South Hem. Scans to above, for a total of 144 scans/day)	Adding: 48 scans / day, all channels @ (64 + 4) MB / (Vis + other) channel =64 MB / scan	Daily Weekly above) Monthly Yearly	20 GB 140 GB 560 GB 7.28 TB	(includes totals immed.